Skip to main content

Network-Based Analysis of Multivariate Gene Expression Data

  • Protocol
  • First Online:
Statistical Methods for Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 972))

Abstract

Multivariate microarray gene expression data are commonly collected to study the genomic responses under ordered conditions such as over increasing/decreasing dose levels or over time during biological processes, where the expression levels of a give gene are expected to be dependent. One important question from such multivariate gene expression experiments is to identify genes that show different expression patterns over treatment dosages or over time; these genes can also point to the pathways that are perturbed during a given biological process. Several empirical Bayes approaches have been developed for identifying the differentially expressed genes in order to account for the parallel structure of the data and to borrow information across all the genes. However, these methods assume that the genes are independent. In this paper, we introduce an alternative empirical Bayes approach for analysis of multivariate gene expression data by assuming a discrete Markov random field (MRF) prior, where the dependency of the differential expression patterns of genes on the networks are modeled by a Markov random field. Simulation studies indicated that the method is quite effective in identifying genes and the modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway information, with similar observed false discovery rates. We applied the proposed methods for analysis of a microarray time course gene expression study of TrkA- and TrkB-transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal adhesion, and prion disease pathways that may explain cell differentiation in TrkA-transfected cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehmann KP, Phillips S, Sar M, Foster PMD, Gaido KW (2004) Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rates exposed to Di (n-butyl) phthalate. Toxicol Sci 81:60–68

    Article  PubMed  CAS  Google Scholar 

  2. Seidel S, Stott W, Kan H, Sparrow B, Gollapudi B (2006) Gene expression dose–response of liver with a genotoxic and nongenotoxic carcinogen. Int J Toxicol 25:57–64

    Article  PubMed  CAS  Google Scholar 

  3. Yuan M, Kendziorski C (2006) Hidden Markov models for microarray time course data under multiple biological conditions (with discussion). J Am Stat Assoc 101(476):1323–1340

    Article  CAS  Google Scholar 

  4. Tai YC, Speed T (2006) A multivariate empirical Bayes statistic for replicated microarray time course data. Ann Stat 34:2387–2412

    Article  Google Scholar 

  5. Hong FX, Li H (2006) Functional hierarchical models for identifying genes with different time-course expression profiles. Biometrics 62:534–544

    Article  PubMed  CAS  Google Scholar 

  6. Wei Z, Li H (2008) A hidden spatial–temporal Markov random field model for network-based analysis of time course gene expression data. Ann Appl Stat 2(1):408–429

    Article  Google Scholar 

  7. Wei Z, Li H (2007) A Markov random field model for network-based analysis of genomic data. Bioinformatics 23:1537–1544

    Article  PubMed  CAS  Google Scholar 

  8. Wei P, Pan W (2008) Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model. Bioinformatics 24:404–411

    Article  PubMed  Google Scholar 

  9. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B 36:192–225

    Google Scholar 

  10. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc Ser B 48:259–302

    Google Scholar 

  11. Aitchison J, Dunsmore IR (1975) Statistical prediction analysis. Cambridge University Press, London

    Book  Google Scholar 

  12. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):Article 3

    Google Scholar 

  13. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev - Cancer 3:203–216

    Article  PubMed  CAS  Google Scholar 

  14. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  15. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization and integrated discovery. Gen Biol 4:P3

    Article  PubMed  CAS  Google Scholar 

  16. Tombes RM, Auer KL, Mikkelsen R, et al (1998) The mitogenactivated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. J biochemistry 330(Pt 3):1451–1460

    Article  PubMed  CAS  Google Scholar 

  17. Kao S, Jaiswal RK, Kolch W, Landreth GE (2001) Identification of the mechanisms regulating the differential activation of the MAPK cascade by epidermal growth factor and nerve growth factor in PC12 cells. J Biol Chem 276(21):18169–18177

    Article  PubMed  CAS  Google Scholar 

  18. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

    Article  PubMed  CAS  Google Scholar 

  19. Qui MS, Green SH (1992) PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9(4):705–717

    Article  PubMed  CAS  Google Scholar 

  20. Basson MD (2008) An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Res 68(1):2–4

    Article  PubMed  CAS  Google Scholar 

  21. Liu W, Bloom DA, Cance WG, Kurenova EV, Golubovskaya VM, Hochwald SN (2008) FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells. Carcinogenesis 29(6):1096–1107

    Article  PubMed  Google Scholar 

  22. Beierle EA, Trujillo A, Nagaram A, Kurenova EV et al (2007) N-MYC regulates focal adhesion kinase expression in human neuroblastoma. J Biol Chem 282(17):12503–12516

    Article  PubMed  CAS  Google Scholar 

  23. Alfarano C, Andrade CE, Anthony K, Hahroos N, Bajec M et al (2005) The bio­molecular interaction network database and related tools 2005 update. Nucleic Acids Res 33:D418–D424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants R01-CA127334 and P01-CA097323. We thank Mr. Edmund Weisberg, MS at Penn CCEB for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhe Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhi, W., Minturn, J., Rappaport, E., Brodeur, G., Li, H. (2013). Network-Based Analysis of Multivariate Gene Expression Data. In: Yakovlev, A., Klebanov, L., Gaile, D. (eds) Statistical Methods for Microarray Data Analysis. Methods in Molecular Biology, vol 972. Humana Press, New York, NY. https://doi.org/10.1007/978-1-60327-337-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-337-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-60327-336-7

  • Online ISBN: 978-1-60327-337-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics