Skip to main content

Bioluminescent Monitoring of In Vivo Colonization and Clearance Dynamics by Light-Emitting Bacteria

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 574))

Abstract

Bioluminescence is an excellent reporter system for analysing bacterial colonization and clearance dynamics in vivo. Many bacterial species have been rendered bioluminescent, allowing the sensitive detection of bacterial burden and metabolic activity in real-time and in situ in living animals. In this chapter we describe the protocols for characterizing in vivo infection models using bioluminescent bacteria: from real-time imaging in living animals by bioluminescence imaging (BLI) to ex vivo BLI of harvested organs and tissues and, finally, to quantification of bacterial numbers in organ and tissue homogenates by luminometry and viable counts. While the lux operon from Photorhabdus luminescens is ideally suited for use in such models, there may be times when alternative luciferases, such as those from the firefly (luc) or marine copepods (Gluc), may be more appropriate. Here we describe the protocols required to monitor colonization and clearance dynamics using bioluminescent bacteria that are lux-, luc-, or Gluc-positive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prosser, J. I., Killham, K., Glover, L. A., and Rattray, E. A. (1996) Luminescence-based systems for detection of bacteria in the environment. Crit Rev Biotechnol 16, 157–183.

    Article  PubMed  CAS  Google Scholar 

  2. Francis, K. P., Joh, D., Bellinger-Kawahara, C., Hawkinson, M. J., Purchio, T. F., and Contag, P. R. (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68, 3594–3600.

    Article  PubMed  CAS  Google Scholar 

  3. Engebrecht, J., Nealson, K., and Silverman, M. (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773–781.

    Article  PubMed  CAS  Google Scholar 

  4. de Wet, J. R., Wood, K. V., Helinski, D. R., and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82, 7870–7873.

    Article  PubMed  CAS  Google Scholar 

  5. Frackman, S., Anhalt, M., and Nealson, K. H. (1990) Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. J Bacteriol 172, 5767–5773.

    PubMed  CAS  Google Scholar 

  6. Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., and Breakefield, X. O. (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11, 435–443.

    Article  PubMed  CAS  Google Scholar 

  7. McElroy, W. D. (1951) Properties of the reaction utilizing adenosinetriphosphate for bioluminescence. J Biol Chem 191, 547–557.

    PubMed  CAS  Google Scholar 

  8. Verhaegent, M., and Christopoulos, T. K. (2002) Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74, 4378–4385.

    Article  PubMed  Google Scholar 

  9. Campbell, A. K. (1989) Living light: biochemistry, applications. Essays Biochem 24, 41–81.

    PubMed  CAS  Google Scholar 

  10. Riendeau, D., and Meighen, E. (1981) Fatty acid reductase in bioluminescent bacteria. Resolution from aldehyde reductases and characterization of the aldehyde product. Can J Biochem 59, 440–446.

    Article  PubMed  CAS  Google Scholar 

  11. Riendeau, D., and Meighen, E. (1985) Enzymatic reduction of fatty acids and acyl-CoAs to long chain aldehydes and alcohols. Experientia 41, 707–713.

    Article  PubMed  CAS  Google Scholar 

  12. Riedel, C. U., Monk, I. R., Casey, P. G., Morrissey, D., O'Sullivan, G. C., Tangney, M., Hill, C., and Gahan, C. G. (2007) Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol 73, 3091–3094.

    Article  PubMed  CAS  Google Scholar 

  13. Wiles, S., Clare, S., Harker, J., Huett, A., Young, D., Dougan, G., and Frankel, G. (2004) Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol 6, 963–972.

    Article  PubMed  CAS  Google Scholar 

  14. Beard, S. J., Salisbury, V., Lewis, R. J., Sharpe, J. A., and MacGowan, A. P. (2002) Expression of lux genes in a clinical isolate of Streptococcus pneumoniae: using bioluminescence to monitor gemifloxacin activity. Antimicrob Agents Chemother 46, 538–542.

    Article  PubMed  CAS  Google Scholar 

  15. Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Orihuela, C., Tuomanen, E., Purchio, A. F., and Contag, P. R. (2005) Noninvasive monitoring of pneumococcal meningitis and evaluation of treatment efficacy in an experimental mouse model. Mol Imaging 4, 137–142.

    PubMed  Google Scholar 

  16. Xiong, Y. Q., Willard, J., Kadurugamuwa, J. L., Yu, J., Francis, K. P., and Bayer, A. S. (2005) Real-time in vivo bioluminescent imaging for evaluating the efficacy of antibiotics in a rat Staphylococcus aureus endocarditis model. Antimicrob Agents Chemother 49, 380–387.

    Article  PubMed  CAS  Google Scholar 

  17. Basaglia, M., Povolo, S., and Casella, S. (2007) Resuscitation of viable but not culturable Sinorhizobium meliloti 41 pRP4-luc: effects of oxygen and host plant. Curr Microbiol 54, 167–174.

    Article  PubMed  CAS  Google Scholar 

  18. Sasahara, K. C., Gray, M. J., Shin, S. J., and Boor, K. J. (2004) Detection of viable Mycobacterium avium subsp. paratuberculosis using luciferase reporter systems. Foodborne Pathog Dis 1, 258–266.

    Article  PubMed  Google Scholar 

  19. Wiles, S., Ferguson, K., Stefanidou, M., Young, D. B., and Robertson, B. D. (2005) Alternative luciferase for monitoring bacterial cells under adverse conditions. Appl Environ Microbiol 71, 3427–3432.

    Article  PubMed  CAS  Google Scholar 

  20. Francis, K. P., Yu, J., Bellinger-Kawahara, C., Joh, D., Hawkinson, M. J., Xiao, G., Purchio, T. F., Caparon, M. G., Lipsitch, M., and Contag, P. R. (2001) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 69, 3350–3358.

    Article  PubMed  CAS  Google Scholar 

  21. Seliger, H. H., and Mc, E. W. (1960) Spectral emission and quantum yield of firefly bioluminescence. Arch Biochem Biophys 88, 136–141.

    Article  PubMed  CAS  Google Scholar 

  22. Hutchens, M., and Luker, G. D. (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9, 2315–2322

    Article  PubMed  CAS  Google Scholar 

  23. Zhao, H., Doyle, T. C., Wong, R. J., Cao, Y., Stevenson, D. K., Piwnica-Worms, D., and Contag, C. H. (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3, 43–54.

    Article  PubMed  CAS  Google Scholar 

  24. Flecknell, P. (1992) Laboratory animals anaesthesia, Second edition, Academic Press, London.

    Google Scholar 

  25. Mundy, R., MacDonald, T. T., Dougan, G., Frankel, G., and Wiles, S. (2005) Citrobacter rodentium of mice and man. Cell Microbiol 7, 1697–1706.

    Article  PubMed  CAS  Google Scholar 

  26. Riska, P. F., Su, Y., Bardarov, S., Freundlich, L., Sarkis, G., Hatfull, G., Carriere, C., Kumar, V., Chan, J., and Jacobs, W. R., Jr. (1999) Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 37, 1144–1149.

    PubMed  CAS  Google Scholar 

  27. Waynforth, H. B., and Flecknell, P.A. (1992) Experimental and surgical techniques in the rat, Second edition, Academic Press, London.

    Google Scholar 

  28. Bloquel, C., Trollet, C., Pradines, E., Seguin, J., Scherman, D., and Bureau, M. F. (2006) Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee. BMC Biotechnol 6, 16.

    Article  PubMed  CAS  Google Scholar 

  29. Buckley, S. M. K., Howe, S.J., Rahim, A. A., Buning, H., McIntosh, J., Wong, S-P., Baker, A. H., Nathwani, A., Thrasher, A. J., Coutelle, C., McKay, T. R., and Waddington, S. N. (2008) Luciferin Detection After Intranasal Vector Delivery Is Improved by Intranasal Rather Than Intraperitoneal Luciferin Administraton. Human Gene Theraphy 19, 1050–1056.

    Article  CAS  Google Scholar 

  30. Gross, S., Abraham, U., Prior, J. L., Herzog, E. D., and Piwnica-Worms, D. (2007) Continuous delivery of d-luciferin by implanted micro-osmotic pumps enables true real-time bioluminescence imaging of luciferase activity in vivo. Mol Imaging 6, 121–130.

    PubMed  CAS  Google Scholar 

  31. Hiler, D. J., Greenwald, M. L., and Geusz, M. E. (2006) Imaging gene expression in live transgenic mice after providing luciferin in drinking water. Photochem Photobiol Sci 5, 1082–1085.

    Article  PubMed  CAS  Google Scholar 

  32. Wiles, S., Crepin, V. F., Childs, G., Frankel, G., and Kerton, A. (2007) Use of biophotonic imaging as a training aid for administration of substances in laboratory rodents. Lab Anim 41, 321–328.

    Article  PubMed  CAS  Google Scholar 

  33. Wiles, S., Pickard, K. M., Peng, K., MacDonald, T. T., and Frankel, G. (2006) In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Infect Immun 74, 5391–5396.

    Article  PubMed  CAS  Google Scholar 

  34. Diehl, K. H., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., Vidal, J. M., and van de Vorstenbosch, C. (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21, 15–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Wellcome Trust for supporting this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wiles, S., Robertson, B.D., Frankel, G., Kerton, A. (2009). Bioluminescent Monitoring of In Vivo Colonization and Clearance Dynamics by Light-Emitting Bacteria. In: Rich, P., Douillet, C. (eds) Bioluminescence. Methods in Molecular Biology™, vol 574. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-321-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-321-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-320-6

  • Online ISBN: 978-1-60327-321-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics