Skip to main content

Thermodynamic Database for Proteins: Features and Applications

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

We have developed a thermodynamic database for proteins and mutants, ProTherm, which is a collection of a large number of thermodynamic data on protein stability along with the sequence and structure information, experimental methods and conditions, and literature information. This is a valuable resource for understanding/predicting the stability of proteins, and it can be accessible at http://www.gibk26.bse.kyutech.ac.jp/jouhou/Protherm/protherm.html. ProTherm has several features including various search, display, and sorting options and visualization tools. We have analyzed the data in ProTherm to examine the relationship among thermodynamics, structure, and function of proteins. We describe the progress on the development of methods for understanding/predicting protein stability, such as (i) relationship between the stability of protein mutants and amino acid properties, (ii) average assignment method, (iii) empirical energy functions, (iv) torsion, distance, and contact potentials, and (v) machine learning techniques. The list of online resources for predicting protein stability has also been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dill, K. A. (1990) Dominant forces in protein folding. Biochemistry 29, 7133–7155.

    Article  CAS  PubMed  Google Scholar 

  2. Rose, G. D., Wolfenden, R. (1993) Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Str 22, 381–415.

    Article  CAS  Google Scholar 

  3. Ponnuswamy, P. K., Gromiha, M. M. (1994) On the conformational stability of folded proteins. J Theor Biol 166, 63–74.

    Article  CAS  Google Scholar 

  4. Pace, C. N., Shirely, B. A., McNutt, M., Gajiwala, K. (1996) Forces contributing to the conformational stability of proteins. FASEB J 10, 75–83.

    CAS  PubMed  Google Scholar 

  5. Yutani, K., Ogasahara, K., Tsujita, T., Sugino, Y. (1987) Dependence of conformational stability on hydrophobicity of the amino acid residue in a series of variant proteins substituted at a unique position of tryptophan synthase alpha subunit. Proc Natl Acad Sci USA 84, 4441–4444.

    Article  CAS  PubMed  Google Scholar 

  6. Shortle, D., Stites, W. E., Meeker, A. K. (1990) Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29, 8033–8041.

    Article  CAS  PubMed  Google Scholar 

  7. Matthews, B. W. (1995) Studies on protein stability with T4 lysozyme. Adv Protein Chem 46, 249–278.

    Article  CAS  PubMed  Google Scholar 

  8. Itzhaki, L. S., Otzen, D. E., Fersht, A. R. (1995) The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol 254, 260–288.

    Article  CAS  PubMed  Google Scholar 

  9. Gromiha, M. M., An, J., Kono, H., Oobatake, M., Uedaira, H., Sarai, A. (1999) ProTherm: thermodynamic database for proteins and mutants. Nucleic Acids Res.27, 286–288.

    Article  CAS  PubMed  Google Scholar 

  10. Bava, K. A., Gromiha, M. M., Uedaira, H., Kitajima, K., Sarai, A. (2004) ProTherm, version 4.0: Thermodynamic Database for Proteins and Mutants. Nucleic Acids Res 32, D120–D121, Database issue.

    Article  CAS  PubMed  Google Scholar 

  11. Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., Sarai, A. (1999) Role of structural and sequence information in the prediction of protein stability changes: comparison between buried and partially buried mutations. Protein Eng 12, 549–555.

    Article  CAS  PubMed  Google Scholar 

  12. Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., Sarai, A. (1999) Relationship between amino acid properties and protein stability: buried mutations. J Protein Chem 18, 565–578.

    Article  CAS  PubMed  Google Scholar 

  13. Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., Sarai, A. (2000) Importance of surrounding residues for predicting protein stability of partially buried mutations. J Biomol Str Dyn 18, 281–295.

    CAS  Google Scholar 

  14. Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., Sarai, A. (2002) Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations. Biopolymers 64, 210–220.

    Article  CAS  PubMed  Google Scholar 

  15. Guerois, R., Nielsen, J. E., Serrano, L. (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320, 369–387.

    Article  CAS  PubMed  Google Scholar 

  16. Bordner, A. J., Abagyan, R. A. (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57, 400–413.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, H., Zhou, Y. (2002) Stability scale and atomic solvation parameters extracted from 1023 mutation experiments. Proteins 49, 483–492.

    Article  CAS  PubMed  Google Scholar 

  18. Khatun, J., Khare, S. D., Nikolay, V., Dokholyan. (2004) Can contact potentials reliably predict stability of proteins? J Mol Biol 336, 1223–1238.

    Article  CAS  PubMed  Google Scholar 

  19. Capriotti, E., Fariselli, P., Casadio, R. (2004) A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics 20, I63–I68.

    Article  CAS  PubMed  Google Scholar 

  20. Capriotti, E., Fariselli, P., Calabrese, R., Casadio, R. (2005) Predicting protein stability changes from sequences using support vector machines. Bioinformatics 21, ii54–ii58.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng, J., Randall, A., Baldi, P. (2005) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62, 1125–1132.

    Article  Google Scholar 

  22. Saraboji, K., Gromiha, M. M., Ponnuswamy, M. N. (2005) Relative importance of secondary structure and solvent accessibility to the stability of protein mutants: a case study with amino acid properties and energetics on T4 and human lysozymes. Comp Biol Chem 29, 25–35.

    Article  CAS  Google Scholar 

  23. Saraboji, K., Gromiha, M. M., Ponnuswamy, M. N. (2006) Average assignment method for predicting the stability of protein mutants. Biopolymers 82, 80–92.

    Article  CAS  PubMed  Google Scholar 

  24. Caballero, J., Fernandez, L., Abreu, J. I., Fernandez, M. (2006) Amino Acid Sequence Autocorrelation vectors and ensembles of Bayesian-Regularized Genetic Neural Networks for prediction of conformational stability of human lysozyme mutants. J Chem Inf Model 46, 1255-1268.

    Article  CAS  PubMed  Google Scholar 

  25. Parthiban, V., Gromiha, M. M., Hoppe, C., Schomburg, D. (2007) Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility. Proteins 66, 41–52.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, L. T., Gromiha, M. M., Ho, S. Y. (2007) iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics 23, 1292–1293.

    Article  CAS  PubMed  Google Scholar 

  27. Yin, S., Ding, F., Dokholyan, N. V. (2007) Eris: an automated estimator of protein stability. Nat Methods 4, 466–467.

    Article  CAS  PubMed  Google Scholar 

  28. Barker, W. C., Garavelli, J. S., Huang, H., McGarvey, P. B., Orcutt, B. C., Srinivasarao, G. Y., Xiao, C., Yeh, L. S., Ledley, R. S., Janda, J. F. et al. (2000) The protein information resource (PIR). Nucleic Acids Res 28, 41–44.

    Article  CAS  PubMed  Google Scholar 

  29. Bairoch, A., Apweiler, R. (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28, 45–48.

    Article  CAS  PubMed  Google Scholar 

  30. Berman, H. M., Westbrook, J., Feng, Z, Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  31. Schomburg, I., Chang, A., Hofmann, O., Ebeling, C., Ehrentreich, F., Schomburg, D. (2002) BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 27, 54–56.

    Article  CAS  PubMed  Google Scholar 

  32. Kabsch, W., Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  33. Eisenhaber, F., Argos, P. (1993) Improved strategy in analytical surface calculation for molecular system- handling of singularities and computational efficiency. J Comp Chem 14, 1272–1280.

    Article  CAS  Google Scholar 

  34. Gromiha, M. M. (2005) A statistical model for predicting protein folding rates from amino acid sequence with structural class information. J Chem Inf Model 45, 494–501.

    Article  CAS  PubMed  Google Scholar 

  35. Gromiha, M. M., Thangakani, A. M., Selvaraj, S. (2006) FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucleic Acids Res 34, W70–W74.

    Article  CAS  PubMed  Google Scholar 

  36. Gromiha, M. M., Selvaraj, S. (2004) Inter-residue interactions in protein folding and stability. Prog Biophys Mol Biol 86, 235–277.

    Article  CAS  PubMed  Google Scholar 

  37. Gromiha, M. M., Pujadas, G., Magyar, C., Selvaraj, S., Simon, I. (2004) Locating the stabilizing residues in (alpha/beta)8 barrel proteins based on hydrophobicity, long-range interactions, and sequence conservation. Proteins 55, 316–329.

    Article  CAS  PubMed  Google Scholar 

  38. Nozaki, Y., Tanford, C. (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem 246, 2211–2217.

    CAS  PubMed  Google Scholar 

  39. Jones, D. D. (1975) Amino acid properties and side-chain orientation in proteins: a cross correlation approach. J Theor Biol 50, 167–183.

    Article  CAS  PubMed  Google Scholar 

  40. Ponnuswamy, P. K. (1993) Hydrophobic characteristics of folded proteins. Prog Biophys Mol Biol 59, 57–103.

    Article  CAS  PubMed  Google Scholar 

  41. Gromiha, M. M., Selvaraj, S. (2001) Comparison between long-range interactions and contact order in determining the folding rates of two-state proteins: application of long-range order to folding rate prediction. J Mol Biol 310, 27–32.

    Article  CAS  PubMed  Google Scholar 

  42. Dosztányi, Z., Fiser, A., Simon, I. (1997) Stabilization centers in proteins: identification, characterization and predictions. J Mol Biol 272, 597–612.

    Article  PubMed  Google Scholar 

  43. Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor, D., Martz, E., Ben-Tal, N. (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164.

    Article  CAS  PubMed  Google Scholar 

  44. Kursula, I., Partanen, S., Lambeir, A. M., Wierenga, R. K. (2002) The importance of the conserved Arg191-Asp227 salt bridge of triosephosphate isomerase for folding, stability, and catalysis. FEBS Lett 518, 39–42.

    Article  CAS  PubMed  Google Scholar 

  45. González-Mondragón, E., Zubillaga, R. A., Saavedra, E., Chánez-Cárdenas, M. E., Pérez-Montfort, R., Hernández-Arana, A. (2004) Conserved cysteine 126 in triosephosphate isomerase is required not for enzymatic activity but for proper folding and stability. Biochemistry 43, 3255–3263.

    Article  PubMed  Google Scholar 

  46. Magyar, C., Gromiha, M. M., Pujadas, G., Tusnády, G. E., Simon, I. (2005) SRide: a server for identifying stabilizing residues in proteins. Nucleic Acids Res 33, W303–W305.

    Article  CAS  PubMed  Google Scholar 

  47. Gilis, D., Rooman, M. (1996) Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials. J Mol Biol 257, 1112–1126.

    Article  CAS  PubMed  Google Scholar 

  48. Gilis, D., Rooman, M. (1997) Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. J Mol Biol 272, 276–290.

    Article  CAS  PubMed  Google Scholar 

  49. Parthiban, V., Gromiha, M. M., Schomburg, D. (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34, W239–W242.

    Article  CAS  PubMed  Google Scholar 

  50. DeLano, W. L. (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org.

Download references

Acknowledgments

We thank Dr. Oliviero Carugo for the invitation to contribute the article. We also acknowledge Prof. M.N. Ponnuswamy, Dr. A. Bava, Dr. H. Uedaira, Dr. H. Kono, Mr. K. Kitajima, Dr. V. Parthiban, Dr. L. Huang, and Dr. K. Saraboji for stimulating discussions and help at various stages of the work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gromiha, M.M., Sarai, A. (2010). Thermodynamic Database for Proteins: Features and Applications. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics