Skip to main content

Protein Crystallizability

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

Obtaining well-diffracting crystals remains a major challenge in protein structure research. In this chapter, we review currently available computational methods to estimate the crystallization potential of a protein, to optimize amino acid sequences toward improved crystallization likelihood, and to design optimal crystal screen conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laskowski, R. A., J. M. Thornton (2008), Understanding the molecular machinery of genetics through 3D structures. Nat Rev Genet 9, 141–151.

    Article  CAS  PubMed  Google Scholar 

  2. McPherson, A. (1999), Crystallization of biological macromolecules. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. IX, 586.

    Google Scholar 

  3. Doye, J. P., A. A. Louis, M. Vendruscolo (2004), Inhibition of protein crystallization by evolutionary negative design. Phys Biol 1, P9–P13.

    Article  CAS  PubMed  Google Scholar 

  4. Bergfors, T. (1999), Protein crystallization: techniques, strategies, tips. Iul Biotechnology Series. Uppsala: International University Line.

    Google Scholar 

  5. Niesen, F. H., H. Berglund, M. Vedadi (2007), The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2, 2212–2221.

    Article  CAS  PubMed  Google Scholar 

  6. Derewenda, Z. S. (2004), Rational protein crystallization by mutational surface engineering. Structure (Camb) 12, 529–535.

    Article  CAS  Google Scholar 

  7. Derewenda, Z. S. (2004), The use of recombinant methods and molecular engineering in protein crystallization. Methods 34, 354–363.

    Article  CAS  PubMed  Google Scholar 

  8. Cooper, D. R., T. Boczek, K. Grelewska, M. Pinkowska, M. Sikorska, M. Zawadzki, Z. Derewenda (2007), Protein crystallization by surface entropy reduction: optimization of the SER strategy. Acta Crystallogr D Biol Crystallogr 63, 636–645.

    Article  PubMed  Google Scholar 

  9. Braig, K., Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, P. B. Sigler (1994), The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578–586.

    Article  CAS  PubMed  Google Scholar 

  10. Lawson, D. M., P. J. Artymiuk, S. J. Yewdall, J. M. Smith, J. C. Livingstone, A. Treffry, A. Luzzago, S. Levi, P. Arosio, G. Cesareni, et al. (1991), Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544.

    Article  CAS  PubMed  Google Scholar 

  11. McElroy, H. H., G. W. Sisson, W. E. Schottlin, R. M. Aust, J. E. Villafranca (1992), Studies on engineering crystallizability by mutation of surface residues of human thymidylate synthase. J Cryst Growth 122, 265–272.

    Article  CAS  Google Scholar 

  12. Yamada, H., T. Tamada, M. Kosaka, K. Miyata, S. Fujiki, M. Tano, M. Moriya, M. Yamanishi, E. Honjo, H. Tada, T. Ino, H. Yamaguchi, J. Futami, M. Seno, T. Nomoto, T. Hirata, M. Yoshimura, R. Kuroki (2007), ’Crystal lattice engineering,’ an approach to engineer protein crystal contacts by creating intermolecular symmetry: crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines. Protein Sci 16, 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  13. Goldschmidt, L., D. R. Cooper, Z. S. Derewenda, D. Eisenberg (2007), Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. Protein Sci 16, 1569–1576.

    Article  CAS  PubMed  Google Scholar 

  14. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne (2000), The Protein Data Bank. Nucleic Acids Res 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  15. Christendat, D., A. Yee, A. Dharamsi, Y. Kluger, A. Savchenko, J. R. Cort, V. Booth, C. D. Mackereth, V. Saridakis, I. Ekiel, G. Kozlov, K. L. Maxwell, N. Wu, L. P. McIntosh, K. Gehring, M. A. Kennedy, A. R. Davidson, E. F. Pai, M. Gerstein, A. M. Edwards, C. H. Arrowsmith (2000), Structural proteomics of an archaeon. Nat Struct Biol 7, 903–909.

    Article  CAS  PubMed  Google Scholar 

  16. Burley, S. K. (2000), An overview of structural genomics. Nat Struct Biol 7 Suppl, 932–934.

    Article  CAS  PubMed  Google Scholar 

  17. Kimber, M. S., F. Vallee, S. Houston, A. Necakov, T. Skarina, E. Evdokimova, S. Beasley, D. Christendat, A. Savchenko, C. H. Arrowsmith, M. Vedadi, M. Gerstein, A. M. Edwards (2003), Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 51, 562–568.

    Article  CAS  PubMed  Google Scholar 

  18. Canaves, J. M., R. Page, I. A. Wilson, R. C. Stevens (2004), Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. J Mol Biol 344, 977–991.

    Article  CAS  PubMed  Google Scholar 

  19. Overton, I. M., G. J. Barton (2006), A normalised scale for structural genomics target ranking: the OB-Score. FEBS Lett 580, 4005–4009.

    Article  CAS  PubMed  Google Scholar 

  20. Apweiler, R., A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O’Donovan, N. Redaschi, L. S. Yeh (2004), UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32 Database issue, D115–D119.

    Article  CAS  PubMed  Google Scholar 

  21. Goh, C. S., N. Lan, S. M. Douglas, B. Wu, N. Echols, A. Smith, D. Milburn, G. T. Montelione, H. Zhao, M. Gerstein (2004), Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol 336, 115–130.

    Article  CAS  PubMed  Google Scholar 

  22. Tatusov, R. L., M. Y. Galperin, D. A. Natale, E. V. Koonin (2000), The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28, 33–36.

    Article  CAS  PubMed  Google Scholar 

  23. Smialowski, P., T. Schmidt, J. Cox, A. Kirschner, D. Frishman (2006), Will my protein crystallize? A sequence-based predictor. Proteins 62, 343–355.

    Article  CAS  PubMed  Google Scholar 

  24. Valafar, H., J. H. Prestegard, F. Valafar (2002), Datamining protein structure databanks for crystallization patterns of proteins. Ann N Y Acad Sci 980, 13–22.

    Article  CAS  PubMed  Google Scholar 

  25. Slabinski, L., L. Jaroszewski, A. P. Rodrigues, L. Rychlewski, I. A. Wilson, S. A. Lesley, A. Godzik (2007), The challenge of protein structure determination–lessons from structural genomics. Protein Sci 16, 2472–2482.

    Article  CAS  PubMed  Google Scholar 

  26. Slabinski, L., L. Jaroszewski, L. Rychlewski, I. A. Wilson, S. A. Lesley, A. Godzik (2007), XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405.

    Article  CAS  PubMed  Google Scholar 

  27. Lupas, A., M. Van Dyke, J. Stock (1991), Predicting coiled coils from protein sequences. Science 252, 1162–1164.

    Article  CAS  Google Scholar 

  28. Ward, J. J., L. J. McGuffin, K. Bryson, B. F. Buxton, D. T. Jones (2004), The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138–2139.

    Article  CAS  PubMed  Google Scholar 

  29. Genest, C. (1984), Aggregation opinions through logarithmic pooling. Theory and Decision 17, 61–70.

    Article  Google Scholar 

  30. Bateman, A., E. Birney, R. Durbin, S. R. Eddy, K. L. Howe, E. L. Sonnhammer (2000), The Pfam protein families database. Nucleic Acids Res 28, 263–266.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J., B. Rost (2004), Sequence-based prediction of protein domains. Nucleic Acids Res 32, 3522–3530.

    Article  CAS  PubMed  Google Scholar 

  32. Orengo, C. A., A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, J. M. Thornton (1997), CATH–a hierarchic classification of protein domain structures. Structure 5, 1093–1108.

    Article  CAS  PubMed  Google Scholar 

  33. Berezin, C., F. Glaser, J. Rosenberg, I. Paz, T. Pupko, P. Fariselli, R. Casadio, N. Ben-Tal (2004), ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20, 1322–1324.

    Article  CAS  PubMed  Google Scholar 

  34. Thibert, B., D. E. Bredesen, G. del Rio (2005), Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinformatics 6, 213.

    Article  PubMed  Google Scholar 

  35. Dosztanyi, Z., V. Csizmok, P. Tompa, I. Simon (2005), IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434.

    Article  CAS  PubMed  Google Scholar 

  36. Wootton, J. C., S. Federhen (1996), Analysis of compositionally biased regions in sequence databases. Methods Enzymol 266, 554–571.

    Article  CAS  PubMed  Google Scholar 

  37. Pollastri, G., A. McLysaght (2005), Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719–1720.

    Article  CAS  PubMed  Google Scholar 

  38. Adamczak, R., A. Porollo, J. Meller (2004), Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 56, 753–767.

    Article  CAS  PubMed  Google Scholar 

  39. Rehm, T., R. Huber, T. A. Holak (2002), Application of NMR in structural proteomics: screening for proteins amenable to structural analysis. Structure 10, 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  40. Hamuro, Y., L. Burns, J. Canaves, R. Hoffman, S. Taylor, V. Woods (2002), Domain organization of D-AKAP2 revealed by enhanced deuterium exchange-mass spectrometry (DXMS). J Mol Biol 321, 703–714.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen, S. L., A. R. Ferre-D’Amare, S. K. Burley, B. T. Chait (1995), Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci 4, 1088–1099.

    Article  CAS  PubMed  Google Scholar 

  42. Bordner, A. J., R. Abagyan (2005), Statistical analysis and prediction of protein-protein interfaces. Proteins 60, 353–366.

    Article  CAS  PubMed  Google Scholar 

  43. Ofran, Y., B. Rost (2003), Analysing six types of protein-protein interfaces. J Mol Biol 325, 377–387.

    Article  CAS  PubMed  Google Scholar 

  44. Fellouse, F. A., C. Wiesmann, S. S. Sidhu (2004), Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc Natl Acad Sci USA 101, 12467–12472.

    Article  CAS  PubMed  Google Scholar 

  45. Lo Conte, L., C. Chothia, J. Janin (1999), The atomic structure of protein-protein recognition sites. J Mol Biol 285, 2177–2198.

    Article  CAS  PubMed  Google Scholar 

  46. Dale, G. E., C. Oefner, A. D’Arcy (2003), The protein as a variable in protein crystallization. J Struct Biol 142, 88–97.

    Article  CAS  PubMed  Google Scholar 

  47. Cox, M., P. C. Weber (1988), An investigation of protein crystallization parameters using successive automated grid search (SAGS). J. Cryst. Growth 90, 318–324.

    Article  CAS  Google Scholar 

  48. Carter, C. W., Jr., C. W. Carter (1979), Protein crystallization using incomplete factorial experiments. J Biol Chem 254, 12219–12223.

    CAS  PubMed  Google Scholar 

  49. Jancarik, J., S. H. Kim (1991), Sparse matrix sampling: a screening method for crystallization of proteins. J Appl Cryst 24, 409–411.

    Article  CAS  Google Scholar 

  50. Stura, E. A., G. R. Nemerow, I. A. Wilson (1991), Strategies in protein crystallization. J Cryst Growth 110, 1–12.

    Article  Google Scholar 

  51. McPherson, A. (1992), Two approaches to the rapid screening of crystallization conditions. J Cryst Growth 122, 161–167.

    Article  CAS  Google Scholar 

  52. Hennessy, D., B. Buchanan, D. Subramanian, P. A. Wilkosz, J. M. Rosenberg (2000), Statistical methods for the objective design of screening procedures for macromolecular crystallization. Acta Crystallogr D Biol Crystallogr 56, 817–827.

    Article  CAS  PubMed  Google Scholar 

  53. Gilliland, G. L., M. Tung, D. M. Blakeslee, J. E. Ladner (1994), Biological Macromolecule Crystallization Database, Version 3.0: new features, data and the NASA archive for protein crystal growth data. Acta Crystallogr D Biol Crystallogr 50, 408–413.

    Article  CAS  PubMed  Google Scholar 

  54. Newman, J. (2005), Expanding screening space through the use of alternative reservoirs in vapor-diffusion experiments. Acta Crystallogr D Biol Crystallogr 61, 490–493.

    Article  PubMed  Google Scholar 

  55. Dunlop, K. V., B. Hazes (2005), A modified vapor-diffusion crystallization protocol that uses a common dehydrating agent. Acta Crystallogr D Biol Crystallogr 61, 1041–1048.

    Article  PubMed  Google Scholar 

  56. Kantardjieff, K. A., B. Rupp (2004), Distribution of pI versus pH provide prior information for the design of crystallization screening experiments: Response to comment on “Protein isoelectric point as a prediction for increased crystallization screening efficiency”. Bioinformatics 20, 2171–2174.

    Article  CAS  Google Scholar 

  57. Kantardjieff, K. A., B. Rupp (2004), Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20, 2162–2168.

    Article  CAS  PubMed  Google Scholar 

  58. Page, R., S. K. Grzechnik, J. M. Canaves, G. Spraggon, A. Kreusch, R. C. Stevens, S. A. Lesley (2003), Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermatoga maritima proteome. Acta Crystallogr D 59, 1028–1037.

    Article  PubMed  Google Scholar 

  59. Izaac, A., C. A. Schall, T. C. Mueser (2006), Assessment of a preliminary solubility screen to improve crystallization trials: uncoupling crystal condition searches. Acta Crystallogr D Biol Crystallogr 62, 833–842.

    Article  PubMed  Google Scholar 

  60. Anderson, M. J., C. L. Hansen, S. R. Quake (2006), Phase knowledge enables rational screens for protein crystallization. Proc Natl Acad Sci USA 103, 16746–16751.

    Article  CAS  PubMed  Google Scholar 

  61. Page, R., R. C. Stevens (2004), Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34, 373–389.

    Article  CAS  PubMed  Google Scholar 

  62. Page, R., A. M. Deacon, S. A. Lesley, R. C. Stevens (2005), Shotgun crystallization strategy for structural genomics II: crystallization conditions that produce high resolution structures for T. maritima proteins. J Struct Funct Genomics 6, 209–217.

    Article  CAS  PubMed  Google Scholar 

  63. Gao, W., S. X. Li, R. C. Bi (2005), An attempt to increase the efficiency of protein crystal screening: a simplified screen and experiments. Acta Crystallogr D Biol Crystallogr 61, 776–779.

    Article  PubMed  Google Scholar 

  64. Gileadi, O., S. Knapp, W. H. Lee, B. D. Marsden, S. Muller, F. H. Niesen, K. L. Kavanagh, L. J. Ball, F. von Delft, D. A. Doyle, U. C. Oppermann, M. Sundstrom (2007), The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. J Struct Funct Genomics 8, 107–119.

    Article  CAS  PubMed  Google Scholar 

  65. Durbin, S. D., G. Feher (1996), Protein crystallization. Annu Rev Phys Chem 47, 171–204.

    Article  CAS  PubMed  Google Scholar 

  66. Smialowski, P., A. J. Martin-Galiano, J. Cox, D. Frishman (2007), Predicting experimental properties of proteins from sequence by machine learning techniques. Curr Protein Pept Sci 8, 121–133.

    Article  CAS  PubMed  Google Scholar 

  67. Mikolajka, A., X. Yan, G. M. Popowicz, P. Smialowski, E. A. Nigg, T. A. Holak (2006), Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J Mol Biol 359, 863–875.

    Article  CAS  PubMed  Google Scholar 

  68. Dong, A., X. Xu, A. M. Edwards, C. Chang, M. Chruszcz, M. Cuff, M. Cymborowski, R. Di Leo, O. Egorova, E. Evdokimova, E. Filippova, J. Gu, J. Guthrie, A. Ignatchenko, A. Joachimiak, N. Klostermann, Y. Kim, Y. Korniyenko, W. Minor, Q. Que, A. Savchenko, T. Skarina, K. Tan, A. Yakunin, A. Yee, V. Yim, R. Zhang, H. Zheng, M. Akutsu, C. Arrowsmith, G. V. Avvakumov, A. Bochkarev, L. G. Dahlgren, S. Dhe-Paganon, S. Dimov, L. Dombrovski, P. Finerty, Jr., S. Flodin, A. Flores, S. Graslund, M. Hammerstrom, M. D. Herman, B. S. Hong, R. Hui, I. Johansson, Y. Liu, M. Nilsson, L. Nedyalkova, P. Nordlund, T. Nyman, J. Min, H. Ouyang, H. W. Park, C. Qi, W. Rabeh, L. Shen, Y. Shen, D. Sukumard, W. Tempel, Y. Tong, L. Tresagues, M. Vedadi, J. R. Walker, J. Weigelt, M. Welin, H. Wu, T. Xiao, H. Zeng, H. Zhu (2007), In situ proteolysis for protein crystallization and structure determination. Nat Methods 4, 1019–1021.

    Article  CAS  PubMed  Google Scholar 

  69. Ksiazek, D., H. Brandstetter, L. Israel, G. P. Bourenkov, G. Katchalova, K. P. Janssen, H. D. Bartunik, A. A. Noegel, M. Schleicher, T. A. Holak (2003), Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. Structure 11, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  70. Wooh, J. W., R. D. Kidd, J. L. Martin, B. Kobe (2003), Comparison of three commercial sparse-matrix crystallization screens. Acta Crystallogr D Biol Crystallogr 59, 769–772.

    Article  PubMed  Google Scholar 

  71. Kim, K. M., E. C. Yi, D. Baker, K. Y. Zhang (2001), Post-translational modification of the N-terminal His tag interferes with the crystallization of the wild-type and mutant SH3 domains from chicken src tyrosine kinase. Acta Crystallogr D Biol Crystallogr 57, 759–762.

    Article  CAS  PubMed  Google Scholar 

  72. Chen, L., R. Oughtred, H. M. Berman, J. Westbrook (2004), TargetDB: a target registration database for structural genomics projects. Bioinformatics 20, 2860–2862.

    Article  CAS  PubMed  Google Scholar 

  73. Charles, M., S. Veesler, F. Bonnete (2006), MPCD: a new interactive on-line crystallization data bank for screening strategies. Acta Crystallogr D Biol Crystallogr 62, 1311–1318.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smialowski, P., Frishman, D. (2010). Protein Crystallizability. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics