Skip to main content

Neural Networks

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 609))

Abstract

Neural networks are a class of intelligent learning machines establishing the relationships between descriptors of real-world objects. As optimisation tools they are also a class of computational algorithms implemented using statistical/numerical techniques for parameter estimate, model selection, and generalisation enhancement. In bioinformatics applications, neural networks have played an important role for classification, function approximation, knowledge discovery, and data visualisation. This chapter will focus on supervised neural networks and discuss their applications to bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCulloch W and Pitts W (1943) A logical calculus the ideas immanent in nervous activity, Bulletin Mathematical Biophysics, 5, 115–133.

    Article  Google Scholar 

  2. Fitch FB, Review: McCulloch WS and Pitts W (1944) A logic calculus of the ideas immanent in nervous activity, Journal Symbolic Logic, 9, 49–50.

    Article  Google Scholar 

  3. Hebb DO (1949) The Organization of Behaviour, John Wiley and Sons Inc.

    Google Scholar 

  4. Minsky M (1954) Steps towards artificial intelligence. In Feigenbaum, EA and Feldman, J, eds Computers & Thought, MIT Press, Cambridge, MA, USA.

    Google Scholar 

  5. Minksy M (1969) Perceptron, MIT Press, Cambridge, MA, USA.

    Google Scholar 

  6. Kohonen T (1982) Analysis of a simple self-organizing process, Biological Cybernetics, 44, 135–140.

    Article  Google Scholar 

  7. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities, PNSA, 79, 2554–2558.

    Article  CAS  Google Scholar 

  8. Werbos PJ (1994) The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting, Willey-Interscience.

    Google Scholar 

  9. Rumelhart DE, Hinton GE, and Williams RJ (1986) Learning internal representations by error propagation. In Rumelhart DF and McClelland, JL eds, Parallel Distributed Processing, 318–362, The MIT press, Cambridge, MA, USA.

    Google Scholar 

  10. Bishop CM (1995) Neural Networks for Pattern Recognition, Clarendon Press, Oxford.

    Google Scholar 

  11. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochimica et Biophysica Acta, 405, 442–451.

    CAS  PubMed  Google Scholar 

  12. Metz CE (1986) ROC Methodology in radiologic imaging, Investigative Radiology, 21, 720–733.

    Article  CAS  PubMed  Google Scholar 

  13. Hecht D, Cheung M, and Fogel GB (2008) QSAR using evolved neural networks for the inhibition of mutant PfDHFR by pyrimethamine derivatives, Biosystems, 92, 10–15.

    CAS  PubMed  Google Scholar 

  14. Slabbinck B, De Baets B, Dawyndt P, and De Vos P (2008) Genus-wide Bacillus species identification through proper artificial neural network experiments on fatty acid profiles, Antonie Van Leeuwenhoek (in press).

    Google Scholar 

  15. Spreafico M, Boriani E, Benfenati E, and Novic M (2008) Structural features of diverse ligands influencing binding affinities to estrogen alpha and estrogen beta receptors. Part II. Molecular descriptors calculated from conformation of the ligands in the complex resulting from previous docking study, Molecular Diversity (in press).

    Google Scholar 

  16. Jalali-Heravi M, Asadollahi-Baboli M, and Shahbazikhah P (2008) QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm, European Journal of Medicinal Chemistry, 43, 548–556.

    Article  CAS  PubMed  Google Scholar 

  17. Catchpoole D, Lail A, Guo D, Chen QR, and Khan J (2007) Gene expression profiles that segregate patients with childhood acute lymphoblastic leukaemia: an independent validation study identifies that endoglin associates with patient outcome, Leukemia Research, 31, 1741–1747.

    Article  CAS  PubMed  Google Scholar 

  18. Moore CL, Smagala JA, Smith CB, Dawson ED, Cox NJ, Kuchta RD, and Rowlen KL (2007) Evaluation of MChip with historic subtype H1N1 influenza A viruses, including the 1918 “Spanish Flu” strain, Journal Clinic Microbiology, 45, 3807–3810.

    Article  CAS  Google Scholar 

  19. Xu R, Venayagamoorthy GK, and Wunsch DC (2007) Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization, Neural Networks, 20, 917–927.

    Article  PubMed  Google Scholar 

  20. Chiang JH, Chao SY (2007) Modeling human cancer-related regulatory modules by GA-RNN hybrid algorithms, BMC Bioinformatics, Mar 14;8:91.

    Article  PubMed  Google Scholar 

  21. Wagner S, Arce R, Murillo R, Terfloth L, Gasteiger J, and Merfort I (2008) Neural networks as valuable tools to differentiate between sesquiterpene lactones’ inhibitory activity on serotonin release and on NF-kappaB, Journal of Medicinal Chemistry, 51, 1324–1332.

    Article  CAS  PubMed  Google Scholar 

  22. Cruz-Monteagudo M, Cordeiro MN, and Borges F (2008) Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity, Journal Computer Chemistry, 29, 533–549.

    Article  CAS  Google Scholar 

  23. Wang L, Zheng W, Mu L, and Zhang SZ (2008) Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks, International Journal Gynaecol Obstet (in press).

    Google Scholar 

  24. Zhang Z, Yu Y, Xu F, Berchuck A, van Haaften-Day C, Havrilesky LJ, de Bruijn HW, van der Zee AG, Woolas RP, Jacobs IJ, Skates S, Chan DW, and Bast RC Jr (2007) Combining multiple serum tumor markers improves detection of stage I epithelial ovarian cancer, Gynecologic Oncology, 107, 526–531.

    Article  CAS  PubMed  Google Scholar 

  25. Luk JM, Lam BY, Lee NP, Ho DW, Sham PC, Chen L, Peng J, Leng X, Day PJ, and Fan ST (2007) Artificial neural networks and decision tree model analysis of liver cancer proteomes, Biochemistry Biophysics Research Communication, 361, 68–73.

    Article  CAS  Google Scholar 

  26. Won HH, Kim MJ, Kim S, and Kim JW (2008) EnsemPro: an ensemble approach to predicting transcription start sites in human genomic DNA sequences, Genomics, 91, 259–266.

    Article  CAS  PubMed  Google Scholar 

  27. Gromiha MM and Suresh MX (2008) Discrimination of mesophilic and thermophilic proteins using machine learning algorithms, Proteins, 70, 1274–1279.

    Article  CAS  PubMed  Google Scholar 

  28. Blom N, Gammeltoft S, and Brunak S (1999) Sequence and structure based prediction of eukaryotic protein phosphorylation sites, Journal of Molecular Biology, 294, 1351–1362.

    Article  CAS  PubMed  Google Scholar 

  29. Dunker AK, Obradovic Z, Romero P, Garner EC, and Brown CJ (2000) Intrinsic protein disorder in complete genomes, Genome Information, 11, 161–171.

    CAS  Google Scholar 

  30. Qian N and Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology, 202, 865–884.

    Article  CAS  PubMed  Google Scholar 

  31. Baldi P, Pollastri G, Andersen C, and Brunak S (2000) Matching protein beta-sheet partners by feedforward and recurrent neural networks, Proceedings of International Conference on Intelligent Systems for Molecular Biology, ISMB, 8, 25–36.

    CAS  Google Scholar 

  32. Edelman J and White SH (1989) Linear optimization of predictors for secondary structure: Application to transbilayer segments of membrane proteins, Journal of Molecular Biology, 210, 195–209.

    Article  CAS  PubMed  Google Scholar 

  33. Thomson R, Hodgman TC, Yang ZR, and Doyle AK (2003) Characterising proteolytic cleavage site activity using bio-basis function neural networks, Bioinformatics, 19, 1741–1747.

    Article  CAS  PubMed  Google Scholar 

  34. Dayhoff MO, Schwartz RM, and Orcutt BC (1978) A model of evolutionary change in proteins. matrices for detecting distant relationships, In Dayhoff MO ed, Atlas of protein sequence and structure, 5, 345–358.

    Google Scholar 

  35. Altschul SF, Gish, W, Miller, W, Myers, E, and Lipman, DJ (1990) Basic local alignment search tool, Journal of Molecular Biology, 215, 403–410.

    CAS  PubMed  Google Scholar 

  36. Johnson MS and Overington JP (1993) A structural basis for sequence comparisons-an evaluation of scoring methodologies, Journal of Molecular Biology , 233, 716–738.

    Article  CAS  PubMed  Google Scholar 

  37. Yang ZR and Berry E (2004) Reduced bio-basis function neural networks for protease cleavage site prediction, Journal of Computational Biology and Bioinformatics, 2, 511–531.

    Article  CAS  Google Scholar 

  38. Yang ZR, Thomson R, McNeil P, and Esnouf R (2005) RONN: use of the bio-basis function neural network technique for the detection of natively disordered regions in proteins, Bioinformatics, 21, 3369–3376.

    Article  CAS  PubMed  Google Scholar 

  39. Berry E, Dalby A, and Yang ZR (2004) Reduced bio basis function neural network for identification of protein phosphorylation sites: Comparison with pattern recognition algorithms, Computational Biology and Chemistry, 28, 75–85.

    Article  CAS  PubMed  Google Scholar 

  40. Senawongse P, Dalby AD, and Yang ZR (2005) Predicting the phosphorylation sites using hidden Markov models and machine learning methods, Journal of Chemical Information and Computer Science, 45, 1147–1152.

    CAS  Google Scholar 

  41. Sidhu A and Yang ZR (2006) Predict signal peptides using bio-basis function neural networks, Applied Bioinformatics, 5, 13–19.

    Article  CAS  PubMed  Google Scholar 

  42. Yang ZR and Chou KC (2004) Bio-basis function neural networks for the prediction of the O-linkage sites in glyco-proteins, Bioinformatics, 20, 903–908.

    Article  CAS  PubMed  Google Scholar 

  43. Yang ZR, Dry J, Thomson R, and Hodgman C (2006) A bio-basis function neural network for protein peptide cleavage activity characterisation. Neural Networks, 19, 401–407.

    Article  PubMed  Google Scholar 

  44. Yang ZR (2005) Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks, Bioinformatics, 21, 1831–1837.

    Article  CAS  PubMed  Google Scholar 

  45. Yang ZR (2005) Mining SARS-CoV protease cleavage data using decision trees, a novel method for decisive template searching, Bioinformatics, 21, 2644–2650.

    Article  CAS  PubMed  Google Scholar 

  46. Yang ZR and Johnathan F (2005) Predict T-cell epitopes using bio-support vector machines, Journal of Chemical Informatics and Computer Science, 45, 1142–1148.

    Google Scholar 

  47. Yang ZR (2006) Predicting hepatitis C virus protease cleavage sites using generalised linear indicator regression models, IEEE Transanctions on Biomedical Engineering, 53, 2119–2123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yang, Z.R. (2010). Neural Networks. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 609. Humana Press. https://doi.org/10.1007/978-1-60327-241-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-241-4_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-240-7

  • Online ISBN: 978-1-60327-241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics