Skip to main content

Disorders of Sodium Homeostasis

  • Chapter
  • First Online:
Fluid and Electrolytes in Pediatrics

Key Points

1. Renal sodium excretion is the primary determinant of sodium homeostasis.

2. Changes in sodium concentration in extracellular fluid (ECF) are associated with disorders of water balance.

3. Hypovolemia refers to losses of salt and water from the ECF, whereas dehydration is defined as primarily water loss from ECF.

4. Hypervolemia results when fluid accumulates in the ECF at a higher rate than the output due to either sodium and water retention or abnormal sodium and water intake.

5. Activation of sympathetic nervous system, renin–angiotensin–aldosterone, and epithelial sodium channel contributes to renal sodium and water retention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berl T, Schrier RW: Renal Sodium Excretion, Edematous Disorders and Diuretic Use. Philadelphia, PA, Lippincott Williams & Wilkins, 2002

    Google Scholar 

  2. Simpson FO: Sodium intake, body sodium, and sodium excretion. Lancet 2:25–29, 1988

    Article  PubMed  CAS  Google Scholar 

  3. Schrier RW: Decreased effective blood volume in edematous disorders: what does this mean? J Am Soc Nephrol 18:2028–2031, 2007

    Article  PubMed  Google Scholar 

  4. Schrier RW: Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med 113:155–159, 1990

    PubMed  CAS  Google Scholar 

  5. Peters JP: The role of sodium in the production of edema. N Engl J Med 239:353–362, 1948

    Article  PubMed  CAS  Google Scholar 

  6. Schrier RW: Water and sodium retention in edematous disorders: role of vasopressin and aldosterone. Am J Med 119:S47–53, 2006

    Article  PubMed  CAS  Google Scholar 

  7. Singer DR, Markandu ND, Buckley MG, et al.: Blood pressure and endocrine responses to changes in dietary sodium intake in cardiac transplant recipients. Implications for the control of sodium balance. Circulation 89:1153–1159, 1994

    Article  PubMed  CAS  Google Scholar 

  8. Borst JG, De Vries LA: The three types of "natural" diuresis. Lancet 2:1–6, 1950

    Article  PubMed  CAS  Google Scholar 

  9. Schrier RW, Arroyo V, Bernardi M, et al.: Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8:1151–1157, 1988

    Article  PubMed  CAS  Google Scholar 

  10. Rose BD PT: Edematous States, 5th edition New York, McGraw-Hill, 2001

    Google Scholar 

  11. Bichet D, Szatalowicz V, Chaimovitz C, et al.: Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med 96:413–417, 1982

    PubMed  CAS  Google Scholar 

  12. Schrier R: Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med 113, 1990

    Google Scholar 

  13. Wright F: Flow-dependent transport processes: Filtration, absorption, secretion. Am J Phys 243:F1, 1982

    CAS  Google Scholar 

  14. Greger R, Velazquez H: The cortical thick ascending limb and early distal convoluted tubule in the urine concentrating mechanism. Kidney Int 31, 1987

    Google Scholar 

  15. Hew-Butler T, Ayus JC, Kipps C, et al.: Statement of the Second International Exercise-Associated Hyponatremia Consensus Development Conference, New Zealand, 2007. Clin J Sport Med 18:111–121, 2008

    Google Scholar 

  16. Szatalowicz VL, Arnold PE, Chaimovitz C, et al.: Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med 305:263–266, 1981

    Article  PubMed  CAS  Google Scholar 

  17. Verney EB: The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci 135:25–106, 1947

    Article  PubMed  CAS  Google Scholar 

  18. Friis-Hansen B: Body water compartments in children: changes during growth and related changes in body composition. Pediatrics 28:169–181, 1961

    PubMed  CAS  Google Scholar 

  19. Adrogue HJ, Madias NE: Hyponatremia. N Engl J Med 342:1581–1589, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Anderson RJ, Chung HM, Kluge R, et al.: Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 102:164–168, 1985

    PubMed  CAS  Google Scholar 

  21. Taylor AE: Capillary fluid filtration. Starling forces and lymph flow. Circ Res 49:557–575, 1981

    Article  PubMed  CAS  Google Scholar 

  22. Ho KK, Pinsky JL, Kannel WB, et al.: The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22:6A–13A, 1993

    Article  PubMed  CAS  Google Scholar 

  23. Chen HH, Schrier RW: Pathophysiology of volume overload in acute heart failure syndromes. Am J Med 119:S11–16, 2006

    Article  PubMed  CAS  Google Scholar 

  24. Schrier RW, Berl T: Nonosmolar factors affecting renal water excretion (first of two parts). N Engl J Med 292:81–88, 1975

    Article  PubMed  CAS  Google Scholar 

  25. Schrier RW, Berl T: Nonosmolar factors affecting renal water excretion (second of two parts). N Engl J Med 292:141–145, 1975

    Article  PubMed  CAS  Google Scholar 

  26. Jessup M, Brozena S: Heart failure. N Engl J Med 348:2007–2018, 2003

    Article  PubMed  Google Scholar 

  27. de Zeeuw D, Janssen WM, de Jong PE: Atrial natriuretic factor: its (patho)physiological significance in humans. Kidney Int 41:1115–1133, 1992

    Article  PubMed  Google Scholar 

  28. Weidmann P, Hasler L, Gnadinger MP, et al.: Blood levels and renal effects of atrial natriuretic peptide in normal man. J Clin Invest 77:734–742, 1986

    Article  PubMed  CAS  Google Scholar 

  29. Cogan MG: Atrial natriuretic peptide. Kidney Int 37:1148–1160, 1990

    Article  PubMed  CAS  Google Scholar 

  30. Ujiie K, Nonoguchi H, Tomita K, et al.: Effects of ANF on cGMP synthesis in inner medullary collecting duct subsegments of rats. Am J Physiol 259:F535–538, 1990

    PubMed  CAS  Google Scholar 

  31. Gines P, Cardenas A, Arroyo V, et al.: Management of cirrhosis and ascites. N Engl J Med 350:1646–1654, 2004

    Article  PubMed  CAS  Google Scholar 

  32. Martin PY, Gines P, Schrier RW: Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med 339:533–541, 1998

    Article  PubMed  CAS  Google Scholar 

  33. Martin PY, Ohara M, Gines P, et al.: Nitric oxide synthase (NOS) inhibition for one week improves renal sodium and water excretion in cirrhotic rats with ascites. J Clin Invest 101:235–242, 1998

    Article  PubMed  CAS  Google Scholar 

  34. Claria J, Jimenez W, Arroyo V, et al.: Blockade of the hydroosmotic effect of vasopressin normalizes water excretion in cirrhotic rats. Gastroenterology 97:1294–1299, 1989

    PubMed  CAS  Google Scholar 

  35. Eddy AA, Symons JM: Nephrotic syndrome in childhood. Lancet 362:629–639, 2003

    Article  PubMed  Google Scholar 

  36. Constantinescu AR, Shah HB, Foote EF, et al.: Predicting first-year relapses in children with nephrotic syndrome. Pediatrics 105:492–495, 2000

    Article  PubMed  CAS  Google Scholar 

  37. Meltzer JI, Keim HJ, Laragh JH, et al.: Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann Intern Med 91:688–696, 1979

    PubMed  CAS  Google Scholar 

  38. Gur A, Adefuin PY, Siegel NJ, et al.: A study of the renal handling of water in lipoid nephrosis. Pediatr Res 10:197–201, 1976

    Article  PubMed  CAS  Google Scholar 

  39. Sala C, Bedogna V, Gammaro L, et al.: Central role of vasopressin in sodium/water retention in hypo- and hypervolemic nephrotic patients: a unifying hypothesis. J Nephrol 17:653–657, 2004

    PubMed  CAS  Google Scholar 

  40. Rose BD and Post TW. Regulation of the effective circulating volume. In: Clinical Physiology of Acid-Base and Electrolyte disorders. McGraw Hill, 2001: 8.5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gordillo, R., Kumar, J., Woroniecki, R.P. (2010). Disorders of Sodium Homeostasis. In: Feld, L., Kaskel, F. (eds) Fluid and Electrolytes in Pediatrics. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-225-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-225-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-224-7

  • Online ISBN: 978-1-60327-225-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics