Skip to main content

Elucidating the Role of Metals in Alzheimer’s Disease Through the Use of Surface-Enhanced Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry

  • Protocol
  • First Online:
Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

Abstract

Alzheimer’s disease (AD) is a highly heterogeneous and progressive dementia which is characterised by a progressive decline in cognitive functioning, selective neuronal atrophy, and loss of cortical volume in areas involved in learning and memory. However, recent research has indicated that the AD-affected brain is also besieged by increases in oxidative stress as well as perturbations to the homeostasis of biometals, such as copper and iron. These metals are known to interact with the neuropathological hallmark of AD, the β-amyloid peptide (Aβ), in a manner which increases Aβ’s neurotoxic effects. This knowledge has led to the development of therapeutic measures which act to restore biometal homeostasis within the AD brain. This chapter outlines how Surface-Enhanced Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry can be used to monitor Aβ levels within biological systems as well as describing the use of immobilised metal affinity capture in the observation of synthetic Aβ peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gravina, S.A., et al., Amyloid β protein (A β) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42(43). Journal of Biological Chemistry, 1995. 270: p. 7013–7016.

    Article  PubMed  CAS  Google Scholar 

  2. Kosik, K.S., C.L. Joachim, and D.J. Selkoe, Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A, 1986. 83: p. 4044–4048.

    Google Scholar 

  3. Chetelat, G., et al., Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain, 2008. 131(1): p. 60–71.

    Article  PubMed  CAS  Google Scholar 

  4. Masters, C.L., et al., Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 1985. 82: p. 4245–4249.

    Google Scholar 

  5. Glenner, G.G. and C.W. Wong, Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun, 1984. 120: p. 885–890.

    Article  PubMed  CAS  Google Scholar 

  6. Goldgaber, D., et al., Isolation, characterization and chromosomal localization of human brain cDNA clones coding for the precursor of the amyloid of brain in Alzheimer’s disease, Down’s syndrome and aging. Journal of Neural Transmission, 1987. 24: p. 23–28.

    PubMed  CAS  Google Scholar 

  7. Kang, J., et al., The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987. 325: p. 733–736.

    Article  PubMed  CAS  Google Scholar 

  8. Robakis, N.K., et al., Molecular cloning and characterization of a cDNA encoding the cerebrovascular and neuritic plaque amyloid peptides. Proc Natl Acad Sci U S A, 1987. 84: p. 4190–4194.

    Google Scholar 

  9. Tanzi, R.E., et al., Amyloid β protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer locus. Science, 1987. 235: p. 880–884.

    Article  PubMed  CAS  Google Scholar 

  10. Blennow, K., M.J. de Leon, and H. Zetterberg, Alzheimer’s disease. Lancet, 2006. 368(9533): p. 387–403.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Y.-W. and H. Xu, Molecular and Cellular Mechanisms for Alzheimer’s Disease: Understanding APP Metabolism. Current Molecular Medicine, 2007. 7(7): p. 687–696.

    Article  PubMed  CAS  Google Scholar 

  12. Prelli, F., et al., Different processing of Alzheimer’s β-protein precursor in the vessel wall of patients with hereditary cerebral hemorrhage with amyloidosis - Dutch type. Biochemical and Biophysical Research Communications, 1988. 151: p. 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  13. Bica, L., et al., Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer’s disease. Molecular Biosystems, 2009. 5(2): p. 134–142.

    Article  PubMed  CAS  Google Scholar 

  14. Masters, C.L., et al., Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J Neurochem, 2006. 97(6): p. 1700–1725.

    Article  PubMed  CAS  Google Scholar 

  15. Jellinger, K.A., et al., Biomarkers for Early Diagnosis of Alzheimer disease: ‘ALZheimer ASsociated gene’ - A New Blood Biomarker? Journal of Cellular and Molecular Medicine, 2008. 12(4): p. 1094–1117.

    Article  PubMed  CAS  Google Scholar 

  16. Crouch, P.J., A.R. White, and A.I. Bush, The modulation of metal bio-availability as a therapeutic strategy for the treatment of Alzheimer’s disease. FEBS Journal, 2007. 274(15): p. 3775–3783.

    Article  PubMed  CAS  Google Scholar 

  17. Bush, A.I. and R.E. Tanzi, Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics, 2008. 5(3): p. 421–432.

    Article  PubMed  CAS  Google Scholar 

  18. Massie, H.R., V.R. Aiello, and A.A. Iodice, Changes with age in copper and superoxide-dismutase levels in brains of C57BL-6J mice. Mechanisms of Ageing and Development, 1979. 10(1–2): p. 93–99.

    Article  PubMed  CAS  Google Scholar 

  19. Maynard, C.J., et al., Overexpression of Alzheimer’s disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J Biol Chem, 2002. 277(47): p. 44670–6.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi, S., et al., Age-related changes in the concentrations of major and trade elements in the brain of rats and mice. Biological Trace Element Research, 2001. 80(2): p. 145–158.

    Article  PubMed  CAS  Google Scholar 

  21. Barnham, K.J., C.L. Masters, and A.I. Bush, Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 2004. 3(3): p. 205–214.

    Article  PubMed  CAS  Google Scholar 

  22. Barnham, K.J., et al., Metal-Protein Attenuating Compounds (MPACs) for the Treatment of Alzheimer’s Disease. Drug Design Reviews-Online, 2004. 1: p. 75–82.

    Article  CAS  Google Scholar 

  23. Finefrock, A.E., Bush, A.I., and P.M. Doraiswamy, Current status of metals as therapeutic targets in Alzheimer’s disease. J Am Geriatr Soc, 2003. 51(8): p. 1143–1148.

    Article  PubMed  Google Scholar 

  24. Atwood, C.S., et al., Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1-42. J Neurochem, 2000. 75: p. 1219–1233.

    Article  PubMed  CAS  Google Scholar 

  25. Opazo, C., et al., Metalloenzyme-like activity of Alzheimer’s disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H 2 O 2 . J Biol Chem, 2002. 277(43): p. 40302–40308.

    Article  PubMed  CAS  Google Scholar 

  26. Adlard, P.A., et al., Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron, 2008. 59(1): p. 43–55.

    Article  PubMed  CAS  Google Scholar 

  27. Crouch, P.J., et al., Increasing Cu bioavailability inhibits A beta oligomers and tau phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(2): p. 381–386.

    Article  PubMed  CAS  Google Scholar 

  28. Hanger, D.P., et al., Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: Generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett, 1992. 147(1): p. 58–62.

    Article  PubMed  CAS  Google Scholar 

  29. White, A.R., et al., Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. Journal of Biological Chemistry, 2006. 281(26): p. 17670–17680.

    Article  PubMed  CAS  Google Scholar 

  30. Issaq, H.J., et al., SELDI-TOF MS for diagnostic proteomics. Analytical Chemistry, 2003. 75(7): p. 148A–155A.

    Article  CAS  Google Scholar 

  31. Whelan, L.C., et al., Applications of SELDI-MS technology in oncology. Journal of Cellular and Molecular Medicine, 2008. 12(5A): p. 1535–1547.

    Google Scholar 

  32. Hutchens, T.W. and T.T. Yip, New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules. Rapid Communications in Mass Spectrometry, 1993. 7(7): p. 576–580.

    Article  CAS  Google Scholar 

  33. Merchant, M. and S.R. Weinberger, Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis, 2000. 21(6): p. 1164–1177.

    Article  PubMed  CAS  Google Scholar 

  34. Wittke, S., T. Kaiser, and H. Mischak, Differential polypeptide display: the search for the elusive target. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2004. 803(1): p. 17–26.

    Article  CAS  Google Scholar 

  35. Vorderwülbecke, S., et al., Protein quantification by the SELDI-TOF-MS-based Protein-Chip ® System. Nature Methods, 2005. 2(5): p. 393–395.

    Article  Google Scholar 

  36. Geng, T., et al., Use of surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS) to study protein expression in a rat model of cocaine withdrawal. Journal of Neuroscience Methods, 2006. 158(1): p. 1–12.

    Article  PubMed  CAS  Google Scholar 

  37. Bio-Rad Laboratories, I., ProteinChip IMAC30 Array (Immobilized Metal Affinity Capture) - Instruction Manual, I. Bio-Rad Laboratories, Editor. 2006.

    Google Scholar 

  38. Qin, W., et al., S100A7, a Novel Alzheimer’s Disease Biomarker with Non-Amyloidogenic α-Secretase Activity Acts via Selective Promotion of ADAM-10. PLoS ONE, 2009. 4(1): p. e4183.

    Article  PubMed  Google Scholar 

  39. Simonsen, A.H., et al., Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiology of Aging, 2008. 29(7): p. 961–968.

    Article  PubMed  CAS  Google Scholar 

  40. Hung, L.W., et al., Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J Neurosci, 2008. 28(46): p. 11950– 11958.

    Article  PubMed  CAS  Google Scholar 

  41. Giannakis, E., et al., Analysis of Aβ Interactions Using ProteinChip Technology. Methods Mol Biol, 2008. p. 71–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Watt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Watt, A.D., Perez, K.A., Hung, L.W. (2011). Elucidating the Role of Metals in Alzheimer’s Disease Through the Use of Surface-Enhanced Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics