Skip to main content

Aerobic Granulation Technology

  • Chapter
Advanced Biological Treatment Processes

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 9))

Abstract

Recently, attention has been given to aerobic granulation, which is a novel environmental biotechnology for wastewater treatment. This chapter reviews the progress and development of basic research and application of aerobic granular sludge sequencing batch reactors in the treatment of a wide variety of wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Alves, A. J. Cavaleiro, E. C. Ferreira, A. L. Amaral, M. Mota, M. da Motta, H. Vivier, and M. N. Pons, Characterization by image analysis of anaerobic sludge under shock conditions,Water Science and Technology, 41, 207–214 (2000).

    CAS  Google Scholar 

  2. Y. Liu, H. L. Xu, K. Y. Show, and J. H. Tay, Anaerobic granulation technology for wastewater treatment,World Journal of Microbiology and Biotechnology, 18, 99–113 (2002).

    Article  Google Scholar 

  3. J. J. Beun, A. Hendriksm, M. C. M. van Loosdrecht, E. Morgenroth, P. A. Wilderer, and J. J. Heijnen, Aerobic granulation in a sequencing batch reactor,Water Research, 33, 2283–2290 (1999).

    Article  CAS  Google Scholar 

  4. D. Peng, N. Bernet, J. P. Delgenes, and R. Moletta, Aerobic granular sludge-a case study,Water Research, 33, 890–893 (1999).

    Article  CAS  Google Scholar 

  5. J. H. Tay, Q. S. Liu, and Y. Liu, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor,Journal of Applied Microbiology, 91, 168–175 (2001).

    Article  CAS  Google Scholar 

  6. J. H. Tay, Q. S. Liu, and Y. Liu, Aerobic granulation in sequential sludge blanket reactor,Water Science and Technology, 46, 13–18 (2002).

    CAS  Google Scholar 

  7. K. Mishima and M. Nakamura, Self-immobilization of aerobic activated sludge — a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment,Water Science and Technology, 23, 981–990 (1991).

    CAS  Google Scholar 

  8. E. Morgenroth, T. Sherden, M. C. M. van Loosdrecht, J. J. Heijnen, and P. A. Wilderer, Aerobic granule sludge in a sequencing batch reactor,Water Research, 31, 3191–3194 (1997).

    Article  CAS  Google Scholar 

  9. J. J. Beun, M. C. M. van Loosdrecht, and J. J. Heijnen, Aerobic granulation in a sequencing batch airlift reactor,Water Research, 36, 702–712 (2002).

    Article  CAS  Google Scholar 

  10. J. J. Beun, M. C. M. van Loosdrecht, E. Morgenroth, and J. J. Heijnen, Aerobic granulation,Water Science and Technology, 41, 41–48 (2000).

    CAS  Google Scholar 

  11. E. Etterer and P. A. Wilderer, Generation and properties of aerobic granular sludge,Water Science and Technology, 43, 19–26 (2001).

    CAS  Google Scholar 

  12. H. L. Jiang, J. H. Tay, and S. T. L. Tay, Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol,Letters in Applied Microbiology, 35, 439–445 (2002).

    Article  Google Scholar 

  13. B. Y. P. Moy, J. H. Tay, S. K. Toh, Y. Liu, and S. T. L. Tay, High organic loading influences the physical characteristics of aerobic sludge granules,Letters in Applied Microbiology, 34, 407–412 (2002).

    Article  Google Scholar 

  14. W. M. Wu,Technological and microbiological aspects of anaerobic granules. Ph.D. thesis, Michigan State University, MI, USA (1991).

    Google Scholar 

  15. J. Chen and S. Y. Lun, Study on mechanism of anaerobic sludge granulation in UASB reactors,Water Science and Technology, 28, 171–178 (1993).

    Google Scholar 

  16. J. H. Tay, Q. S. Liu, S. T. L. Tay, B. Y. P. Moy, and Y. Liu, Aerobic granulation: an innovative biotechnology for industrial wastewater treatment, In:Proceeding of Sino-Singapore Joint Symposium on Environmental Protection Technologies and Environmental Hydraulics and First Asian Environmental Research Alliance Partnership Symposium, January 06–09, 2003, pp. 215–222, Taipei, Taiwan (2003).

    Google Scholar 

  17. J. H. Tay, S. F. Yang, and Y. Liu, Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors,Applied Microbiology and Biotechnology, 59, 332–337 (2002).

    Article  CAS  Google Scholar 

  18. L. W. Hulshoff Pol,The phenomenon of granulation of anaerobic sludge, Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands (1989).

    Google Scholar 

  19. N. Kosaric, R. Blaszczyk, L. Orphan, and J. Valladares, The characteristics of granules from upflow anaerobic sludge blanket reactors,Water Research, 24, 1473–1477 (1990).

    Article  CAS  Google Scholar 

  20. C. M. M. Campos and G. K. Anderson, The effect of the liquID upflow velocity and the substrate concentration on the start-up and steady state period of lab-scale UASB reactors,Water Science and Technology, 25, 41–50 (1992).

    CAS  Google Scholar 

  21. J. H. Tay and Y. G. Yan, Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors,Water Environmental Research, 68, 1140–1150 (1996).

    Article  CAS  Google Scholar 

  22. J. T. C. Grotenhuis, J. B. van Lier, C. M. Plugge, A. J. M. Stams, and A. J. B. Zehnder, Effect of ethylene glycol-bis ((-aminoethyl ether)-N,N,-tetraacetic acID (EGTA) on stability and activity of methanogenic granular sludge,Applied Microbiology and Biotechnology, 36, 109–114 (1991).

    Article  CAS  Google Scholar 

  23. L. Morvai, P. Mihaltz, and L. Cazko, The kinetics basis of a new start-up method to ensure the rapID granulation of anaerobic sludge,Water Science and Technology, 25, 113–122 (1992).

    CAS  Google Scholar 

  24. J. Quarmby and C. F. Forster, An examination of structure of UASB granules,Water Research, 29, 2449–2545 (1995).

    Article  CAS  Google Scholar 

  25. P. A. Alphenaar, A. Visser, and G. Lettinga, The effect of liquID upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high-sulphate content,Bioresource Technology, 43, 249–258 (1993).

    Article  CAS  Google Scholar 

  26. Y. Arcand, S. R. Guitot, M. Desrochers, and C. Chavarie, Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules,Journal of Chemical Technology and Biochemistry, 56, 23–35 (1994).

    Article  Google Scholar 

  27. V. O';Flaherty, P. N. Lens, D. de Beer, and E. Colleran, Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors,Applied Microbiology and Biotechnology, 47, 102–107 (1997).

    Article  Google Scholar 

  28. Y. Liu and J. H. Tay, Detachment forces and their influence on the structure and metabolic behavior of biofilms,World Journal of Microbiology and Biotechnology, 17, 111–117 (2001).

    Article  CAS  Google Scholar 

  29. Y. Liu and J. H. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge,Water Research, 36, 1653–1665 (2002).

    Article  CAS  Google Scholar 

  30. M. C. M. van Loosdrecht, D. Eikelboom, A. Gjaltema, A. Mulder, L. Tijhuis, and J. J. Heijnen, Biofilm structures,Water Science and Technology, 32, 35–43 (1995).

    Article  Google Scholar 

  31. H. T. Chang, B. E. Rittmann, D. R. Amar, O. Ehrlinger, and Y. Lesty, Biofilm detachment mechanisms in a liquID fluIDized bed,Biotechnology and Bioengineering, 38, 499–506 (1991).

    Article  CAS  Google Scholar 

  32. W. K. Kwok, C. Picioreanu, S. L. Ong, M. C. M. van Loosdrecht, W. J. Ng, and J. J. Heijnen, Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor,Biotechnology and Bioengineering, 58, 400–407 (1998).

    Article  CAS  Google Scholar 

  33. H. S. Shin, K. H. Lim, and H. S. Park, Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactor,Water Science and Technology, 26, 601–605 (1992).

    CAS  Google Scholar 

  34. J. H. Tay, Q. S. Liu, and Y. Liu, The effects of shear force on the formation, structure and metabolism of aerobic granules,Applied Microbiology and Biotechnology, 57, 227–233 (2001).

    Article  CAS  Google Scholar 

  35. M. J. Vieira, L. F. Melo, and M. M. Pinheiro, Biofilm formations: hydrodynamic effects on internal diffusion and structure,Biofouling, 7, 67 (1993).

    Article  CAS  Google Scholar 

  36. S. Wasche, H. Horn, and D. C. Hempel, Mass transfer phenomena in biofilm systems,Water Science and Technology, 41, 357 (2000).

    CAS  Google Scholar 

  37. W. R. Ross, The phenomenon of sludge pelletization in the anaerobic treatment of a maize processing waste,Water S A, 10, 197–204 (1984).

    CAS  Google Scholar 

  38. B. E. Christensen, The role of extracellular polysaccharIDes in biofilms,Journal of Biotechnology, 10, 181–202 (1989).

    Article  CAS  Google Scholar 

  39. J. H. Tay, Q. S. Liu, and Y. Liu, The role of cellular polysaccharIDes in the formation and stability of aerobic granules,Letters in Applied Microbiology, 33, 222–226 (2001).

    Article  CAS  Google Scholar 

  40. F. Trinet, R. Heim, D. Amar, H. T. Chang, and B. E. Rittmann, Study of biofilm and fluIDization of bioparticles in a three-phase fluIDized-bed reactor,Water Science and Technology, 23, 1347 (1991).

    CAS  Google Scholar 

  41. A. Ohashi and H. Harada, Adhesion strength of biofilm developed in an attached-growth reactor,Water Science and Technology, 29, 10 (1994).

    Google Scholar 

  42. M. J. Chen, Z. Zhang, and T. R. Bott, Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation,Biotechnology Techniques, 12, 875–880 (1998).

    Article  CAS  Google Scholar 

  43. J. T. C. Grotenhuis, J. C. Kissel, C. M. Plugge, and A. J. B. Zehnder, Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors,Water Research, 25, 21–25 (1991).

    Article  CAS  Google Scholar 

  44. J. E. SchmIDt and B. K. Ahring, Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors,Enzyme Microbial Biotechnology, 15, 304–310 (1993).

    Article  CAS  Google Scholar 

  45. C. F. Shen, N. Kosaric, and R. Blaszczyk, The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (EPS),Water Research, 27, 25–33 (1993).

    Article  CAS  Google Scholar 

  46. L. W. Hulshoff Pol, W. J. de Zeeuw, C. T. M. Velzeboer, and G. Lettinga, Granulation in UASB reactors,Water Science and Technology, 15, 291–304 (1983).

    CAS  Google Scholar 

  47. E. M. Mahoney, L. K. Varangu, W. L. Cairns, N. Kosaric, and R. G. E. Murray, The effect of calcium in microbial aggregation during UASB start-up,Water Science and Technology, 19, 249–260 (1987).

    CAS  Google Scholar 

  48. J. T. C. Grotenthuis, J. van Lier, and C. M. Plugge, Effect of calcium removal on size and strength of methanogenic granules, In:Poster-Papers, Fifth International Symposium on Anaerobic Digestion, 22–26 May 1988, A. Tilche and A. Rozzi (eds.), pp. 117–120, Bologna, Italy (1988).

    Google Scholar 

  49. H. L. Jiang, J. H. Tay, Y. Liu, and S. T. L. Tay, Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors,Biotechnology Letters, 25, 95–99 (2003).

    Article  CAS  Google Scholar 

  50. K. C. Marshall and R. H. Gruickshank, Cell surface hydrophobicity and the orientation of certain bacteria at interfaces,Archives of Microbiology, 91, 29–40 (1973).

    CAS  Google Scholar 

  51. B. Del Re, B. Sgorbati, M. Miglioli, and D. Palenzona, Adhesion, autoaggregation and hydrophobicity of 13 strains ofBifIDobacterium longum, Letters in Applied Microbiology, 31, 438–442 (2000).

    Article  Google Scholar 

  52. J. H. Tay, Q. S. Liu, and Y. Liu, Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors,Environmental Technology, 23, 931–936 (2002).

    Article  CAS  Google Scholar 

  53. J. R. Zhu and P. A. Wilderer, Effect of extended IDle conditions on structure and activity of granular activated sludge,Water Research, 37, 2013–2018 (2003).

    Article  CAS  Google Scholar 

  54. J. H. Tay, V. Ivanov, S. Pan, and S. T. L. Tay, Specific layers in aerobically grown microbial granules,Letters in Applied Microbiology, 34, 254–257 (2002).

    Article  CAS  Google Scholar 

  55. S. T. L. Tay, V. Ivanov, S. Yi, W. Q. Zhuang, and J. H. Tay, Presence of Anaerobic BacteroIDes in Aerobically Grown Microbial Granules,Microbial Ecology, 44, 278–285 (2002).

    Article  CAS  Google Scholar 

  56. S. K. Toh, S. T. L. Tay, B. Y. P. Moy, V. Ivanov, and J. H. Tay, Size-effect on the physical characteristics of the aerobic granules in a SBR,Applied Microbiology and Biotechnology, 60, 687–695 (2003).

    CAS  Google Scholar 

  57. J. H. Tay, S. T. L. Tay, V. Ivanov, S. Pan, and Q. S. Liu, Biomass and porosity profile in microbial granules sued for aerobic wastewater treatment,Letters in Applied Microbiology, 36, 297–301 (2003).

    Article  Google Scholar 

  58. S. Yi, J. H. Tay, A. M. Maszenan, and S. T. L. Tay, A culture-independent approach for studying microbial diversity in aerobic granules, In:Proceedings of IWA Asian Environmental Technology Conference, October 30–November 1, 2001, pp. 486–494 (2001).

    Google Scholar 

  59. J. H. Pringle and M. Fletcher, Influence of substratum wettability on attachment of fresh bacteria to solID surface,Applied and Environmental Microbiology, 45, 811–817 (1983).

    CAS  Google Scholar 

  60. J. H. Tay, H. L. Xu, and K. C. Teo, Molecular mechanism of granulation. I: H+ translocation-dehydration theory,Journal of Environmental Engineering, 126, 403–410 (2000).

    Article  CAS  Google Scholar 

  61. Y. Liu, S. F. Yang, Q. S. Liu, and J. H. Tay, The Role of cell hydrophobicity in the formation of aerobic granules,Current Microbiology, 46, 270–274 (2003).

    Article  CAS  Google Scholar 

  62. D. H. Applegate and J. D. Fryers, Effects of carbon and oxygen limitations and calcium concentration on biofilm removal processes,Biotechnology and Bioengineering, 37, 17–25 (1991).

    Article  CAS  Google Scholar 

  63. J. E. SchmIDt and B. K. Ahring, Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors,Applied Microbiology and Biotechnology, 42, 457–462 (1994).

    CAS  Google Scholar 

  64. H. Harada, G. Endo, Y. Tohya, and K. Momomoi, High rate performance and its related characteristics of granulated sludges in UASB reactors treating various wastewaters, In:Poster papers of the 5th International symposium on Anaerobic digestion, 22–26 May 1988, A. Tilche, A. Rozzi (eds.), pp. 1011–1022, Bologna, Italy (1988).

    Google Scholar 

  65. P. Vandevivere and D. L. Kirchman, Attachment stimulates exopolysaccharIDe synthesis by a bacteria,Applied and Environmental Microbiology, 59, 3280–3286 (1993).

    CAS  Google Scholar 

  66. P. N. Danese, L. A. Pratt, and R. Kolter, ExopolysaccharIDe production is required for development ofEscherichia coli K-12 biofilm architecture,Journal of Bacteriology, 182, 3593–3596 (2000).

    Article  CAS  Google Scholar 

  67. A. Lodi, C. Solisoio, A. Converti, and M. Del Borghi, Cadmium, Zinc, Copper, Silver and Chromium(III) removal from wastewaters bySphaerotilus natans, Bioprocess Engineering, 19, 197–203 (1998).

    CAS  Google Scholar 

  68. J. Taniguchi, H. Hemmi, K. Tanahashi, N. Amano, T. Nakayama, and T. Nishim, Zinc biosorp-tion by a zinc-resistant bacterium,Brevibacterium sp. Strain HZM-1,Applied Microbiology and Biotechnology, 54, 581–588 (2000).

    CAS  Google Scholar 

  69. E. Valdman and S. G. F. Leite, Biosorption of Cd, Zn and Cu bySaragssum sp. waste biomass,Bioprocess Engineering, 22, 171–173 (2000).

    Article  CAS  Google Scholar 

  70. Y. Lim, M. C. Lam, and H. H. P. Fang, Adsorption of heavy metals by EPS of activated sludge,Water Science and Technology, 43, 59–66 (2002).

    Google Scholar 

  71. Y. Liu, S. F. Yang, S. F. Tan, Y. M. Lin, and J. H. Tay, Aerobic granules: a novel zinc biosorbent,Letters in Applied Microbiology, 35, 548–551 (2002).

    Article  CAS  Google Scholar 

  72. Y. Liu, S. F. Yang, H. Xu, K. H. Woon, Y. M. Lin, and J. H. Tay, Biosoption kinetics of cadmium (II) on aerobic granular sludge,Process Biochemistry, 38, 995–999 (2003).

    Google Scholar 

  73. J. R. Zhu and C. X. Liu, Cultivation and physico-chemical characteristics of granular activated sludge in alternation of anaerobic/aerobic process,Chinese Journal of Environmental Science, 20, 38–41 (1999).

    Google Scholar 

  74. J. H. Tay, S. Pan, Y. X. He, and S. T. L. Tay, Effect of organic loading rate on aerobic granulation. Part I: reactor performance,Journal of Environmental Engineering, 130, 1094–1101 (2004).

    Article  CAS  Google Scholar 

  75. J. H. Tay, S. Pan, Y. X. He, and S. T. L. Tay, Effect of organic loading rate on aerobic granulation. Part II: Characteristics of aerobic granules,Journal of Environmental Engineering, 130, 1415–1423 (2004).

    Article  CAS  Google Scholar 

  76. Y. Liu, S. F. Yang, J. H. Tay, Q. S. Liu, L. Qin, and Y. Li, Cell hydrophobicity is a triggering force of biogranulation,Enzyme Microbial Technology, 34, 371–379 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer ScienceCBusiness Media, LLC

About this chapter

Cite this chapter

Tay, JH., Liu, Y., Tay, S.TL., Hung, YT. (2009). Aerobic Granulation Technology. In: Wang, L.K., Shammas, N.K., Hung, YT. (eds) Advanced Biological Treatment Processes. Handbook of Environmental Engineering, vol 9. Humana Press. https://doi.org/10.1007/978-1-60327-170-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-170-7_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-360-2

  • Online ISBN: 978-1-60327-170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics