Skip to main content

Genome Rearrangement by the Double Cut and Join Operation

  • Protocol
Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 452))

Abstract

The Double Cut and Join is an operation acting locally at four chromosomal positions without regard to chromosomal context. This chapter discusses its application and the resulting menu of operations for genomes consisting of arbitrary numbers of circular chromosomes, as well as for a general mix of linear and circular chromosomes. In the general case the menu includes: inversion, translocation, transposition, formation and absorption of circular intermediates, conversion between linear and circular chromosomes, block interchange, fission, and fusion. This chapter discusses the well-known edge graph and its dual, the adjacency graph, recently introduced by Bergeron et al. Step-by-step procedures are given for constructing and manipulating these graphs. Simple algorithms are given in the adjacency graph for computing the minimal DCJ distance between two genomes and finding a minimal sorting; and use of an online tool (Mauve) to generate synteny blocks and apply DCJ is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nadeau, J. H., Taylor, B. A. (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A 81, 814–818.

    Article  PubMed  CAS  Google Scholar 

  2. Pevzner, P. A. (2000) Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge, MA.

    Google Scholar 

  3. Yancopoulos, S., Attie, O., Friedberg, R. (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346

    Article  PubMed  CAS  Google Scholar 

  4. Bergeron, A., Mixtacki, J., Stoye, J. (2006) A unifying view of genome rearrangements. WABI 2006, 163–173.

    Google Scholar 

  5. Christie, D. A. (1996) Sorting permutations by block interchanges. Inform Proc Lett 60,165–169.

    Article  Google Scholar 

  6. Lin, Y. C., et al. (2005) An efficient algorithm for sorting by block-interchanges and its application to the evolution of Vibrio species. J Comput Biol 12, 102112.

    Article  PubMed  CAS  Google Scholar 

  7. Meidanis, J., Dias, Z. (2001) Genome rearrangements distance by fusion, fission, and transposition is easy. In Proceedings of SPIRE'2001—String Processing and Information Retrieval, Laguna de San Rafael, Chile.

    Google Scholar 

  8. Kececioglu, J., Sankoff, D. (1995) Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13, 180–210.

    Article  Google Scholar 

  9. Bergeron, A., private communication.

    Google Scholar 

  10. Bafna, V., Pevzner, P.A. (1993) Genome rearrangements and sorting by reversals. In Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, IEEE Press, Los Alamitos, CA.

    Google Scholar 

  11. Hannenhalli, S., Pevzner, P. A. (1995) Transforming men into mice (polynomial algorithm for genomic distance problem). In Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, Milwaukee, WI.

    Google Scholar 

  12. Darling, A. C. E., Mau, B., Blattner, F. R., et al. (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14, 1394–1403.

    Article  PubMed  CAS  Google Scholar 

  13. Darling, A. E., Treangen, T. J., Zhang, L., et al. (2006) Procrastination leads to efficient filtration for local multiple alignment. Lecture Notes in Bioinformatics. Springer-Verlag, New York.

    Google Scholar 

  14. Darling, A. E., Treangen, T. J., Messeguer, X., et al. (2007) Analyzing patterns of microbial evolution using the Mauve genome alignment system, in (Bergman, ed.), Comparative Genomics. Humana Press, Totowa, NJ, in press.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to David Sankoff for his advice and encouragement; Anne Bergeron for communicating the idea of the adjacency graph in advance of publication; Mike Tsai for his online implementation of the DCJ; and Betty Harris for invaluable logistic support and encouragement. S.Y. thanks Nicholas Chiorazzi for his enthusiasm, encouragement, and support; and A.E.D is supported by NSF grant DBI-0630765.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Friedberg, R., Darling, A.E., Yancopoulos, S. (2008). Genome Rearrangement by the Double Cut and Join Operation. In: Keith, J.M. (eds) Bioinformatics. Methods in Molecular Biology™, vol 452. Humana Press. https://doi.org/10.1007/978-1-60327-159-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-159-2_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-707-5

  • Online ISBN: 978-1-60327-159-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics