Skip to main content

Inferring Ancestral Gene Order

  • Protocol
Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 452))

Abstract

To explain the evolutionary mechanisms by which populations of organisms change over time, it is necessary to first understand the pathways by which genomes have changed over time. Understanding genome evolution requires comparing modern genomes with ancestral genomes, which thus necessitates the reconstruction of those ancestral genomes. This chapter describes automated approaches to infer the nature of ancestral genomes from modern sequenced genomes. Because several rounds of whole genome duplication have punctuated the evolution of animals with backbones, and current methods for ortholog calling do not adequately account for such events, we developed ways to infer the nature of ancestral chromosomes after genome duplication. We apply this method here to reconstruct the ancestors of a specific chromosome in the zebrafish Danio rerio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allende, M. L., Manzanares, M., Tena, J. J., et al. (2006) Cracking the genome's second code: enhancer detection by combined phy-logenetic footprinting and transgenic fish and frog embryos. Methods 39, 212–219.

    Article  PubMed  CAS  Google Scholar 

  2. Tran, T., Havlak, P., Miller, J. (2006) Micro-RNA enrichment among short ‘ultraconserved’ sequences in insects. Nucleic Acids Res 34, e65.

    Article  PubMed  CAS  Google Scholar 

  3. Sauer, T., Shelest, E., Wingender, E. (2006) Evaluating phylogenetic footprinting for human-rodent comparisons. Bioinformatics 22, 430–437.

    Article  PubMed  CAS  Google Scholar 

  4. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  5. Wall, D. P., Fraser, H. B., Hirsh, A. E. (2003) Detecting putative orthologs. Bio-informatics 19, 1710–1711.

    CAS  Google Scholar 

  6. Ohno, S. (1970) Evolution by Gene Duplication. Springer-Verlag, New York.

    Google Scholar 

  7. Lundin, L. G. (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1–19.

    Article  PubMed  CAS  Google Scholar 

  8. Spring, J. (1997) Vertebrate evolution by interspecific hybridization—are we poly-ploid? Fed Eur Biol Soc Lett 400, 2–8.

    Article  CAS  Google Scholar 

  9. Dehal, P., Boore, J. L. (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3, e314.

    Article  PubMed  Google Scholar 

  10. Garcia-Fernàndez, J., Holland, P. W. (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370, 563–66.

    Article  PubMed  Google Scholar 

  11. Ferrier, D. E., Minguillon, C., Holland, P. W., et al. (2000) The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev 2, 284–293.

    Article  PubMed  CAS  Google Scholar 

  12. Minguillon, C., Gardenyes, J., Serra, E., et al. (2005) No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 1, 19–23.

    PubMed  CAS  Google Scholar 

  13. Powers TP, A. C. (2004) Evidence for a Hox14 paralog group in vertebrates. Curr Biol 14, R183–184.

    Article  PubMed  Google Scholar 

  14. Koh, E. G., Lam, K., Christoffels, A., et al. (2003) Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. Proc Natl Acad Sci U S A 100, 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  15. Amores, A., Force, A., Yan, Y.-L., et al. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714.

    Article  PubMed  CAS  Google Scholar 

  16. Chiu, C. H., Amemiya, C., Dewar, K., et al. (2002) Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc Natl Acad Sci U S A 99, 5492–5497.

    Article  PubMed  CAS  Google Scholar 

  17. Acampora, D., D'Esposito, M., Faiella, A., et al. (1989) The human HOX gene family. Nucleic Acids Res 17, 10385–10402.

    Article  PubMed  CAS  Google Scholar 

  18. Graham, A., Papalopulu, N., Krumlauf, R. (1989) The murine and Drosophila home-obox gene complexes have common features of organization and expression. Cell 57, 367–378.

    Article  PubMed  CAS  Google Scholar 

  19. Duboule, D. (1998) Vertebrate hox gene regulation: clustering and/or colinearity? Curr Opin Genet Dev 8, 514–518.

    Article  PubMed  CAS  Google Scholar 

  20. Postlethwait, J. H., Yan, Y.-L., Gates, M., et al. (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18, 345–349.

    Article  PubMed  CAS  Google Scholar 

  21. Postlethwait, J. H., Amores, A., Yan, G., et al. (2002) Duplication of a portion of human chromosome 20q containing Topoisomerase (Top1) and snail genes provides evidence on genome expansion and the radiation of teleost fish., in (Shimizu, N., Aoki, T., Hirono, I., Takashima, F., eds.), Aquatic Genomics: Steps Toward a Great Future. Springer-Verlag, Tokyo.

    Google Scholar 

  22. Taylor, J., Braasch, I., Frickey, T., et al. (2003) Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res. 13, 382–390.

    Article  PubMed  CAS  Google Scholar 

  23. Van de Peer, Y., Taylor, J. S., Meyer, A. (2003) Are all fishes ancient polyploids? J Struct Funct Genomics 3, 65–73.

    Article  PubMed  Google Scholar 

  24. Hoegg, S., Brinkmann, H., Taylor, J. S., et al. (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59, 190–203.

    Article  PubMed  CAS  Google Scholar 

  25. Amores, A., Suzuki, T., Yan, Y. L., et al. (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14, 1–10.

    Article  PubMed  CAS  Google Scholar 

  26. Hoegg, S., Meyer, A. (2005) Hox clusters as models for vertebrate genome evolution. Trends Genet 21, 421–424.

    Article  PubMed  CAS  Google Scholar 

  27. Naruse, K., Tanaka, M., Mita, K., et al. (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14, 820–828.

    Article  PubMed  CAS  Google Scholar 

  28. Aparicio, S., Hawker, K., Cottage, A., et al. (1997) Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16, 79–83.

    Article  PubMed  CAS  Google Scholar 

  29. Hedges, S. B. (2002) The origin and evolution of model organisms. Nat Rev Genet 3, 838–849.

    Article  PubMed  CAS  Google Scholar 

  30. Postlethwait, J. H., Woods, I. G., Ngo-Hazelett, P., et al. (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10, 1890–1902.

    Article  PubMed  CAS  Google Scholar 

  31. Jaillon, O., Aury, J. M., Brunet, F., et al. (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957.

    Article  PubMed  Google Scholar 

  32. Conery, J., Catchen, J., Lynch, M. (2005) Rule-based workflow management for bio-informatics. VLDB J 14, 318–329.

    Article  Google Scholar 

  33. Van de Peer, Y. (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5, 752–763.

    Article  PubMed  Google Scholar 

  34. Coulier, F., Popovici, C., Villet, R., et al. (2000) MetaHox gene clusters. J Exp Zool 288, 345–351.

    Article  PubMed  CAS  Google Scholar 

  35. Elgar, G., Clark, M., Green, A., et al. (1997) How good a model is the Fugu genome? Nature 387, 140.

    Article  PubMed  CAS  Google Scholar 

  36. Inoue, J. G., Miya, M., Tsukamoto, K., et al. (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylog-eny of the “ancient fish”. Mol Phylogenet Evol 26, 110–120.

    Article  PubMed  CAS  Google Scholar 

  37. Miya, M., Takeshima, H., Endo, H., et al. (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26, 121–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grant no. 5R01RR020833-02 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. J. Catchen was supported in part by an IGERT grant from NSF in Evolution, Development, and Genomics (DGE 9972830).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Catchen, J.M., Conery, J.S., Postlethwait, J.H. (2008). Inferring Ancestral Gene Order. In: Keith, J.M. (eds) Bioinformatics. Methods in Molecular Biology™, vol 452. Humana Press. https://doi.org/10.1007/978-1-60327-159-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-159-2_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-707-5

  • Online ISBN: 978-1-60327-159-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics