Skip to main content

Definition of MHC Supertypes Through Clustering of MHC Peptide-Binding Repertoires

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

Identification of peptides that can bind to major histocompatibility complex (MHC) molecules is important for anticipation of T-cell epitopes and for the design of epitope-based vaccines. Population coverage of epitope vaccines is, however, compromised by the extreme polymorphism of MHC molecules, which is in fact the basis for their differential peptide binding. Therefore, grouping of MHC molecules into supertypes according to peptide-binding specificity is relevant for optimizing the composition of epitope-based vaccines. Despite the fact that the peptide-binding specificity of MHC molecules is linked to their specific amino acid sequences, it is unclear how amino sequence differences correlate with peptide-binding specificities. In this chapter, we detail a method for defining MHC supertypes based on the analysis and subsequent clustering of their peptide-binding repertoires

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Margulies, D.H. 1997. Interactions of TCRs with MHC-peptide complexes: a quantitative basis for mechanistic models. Curr Opin Immunol 9:390–395.

    Article  CAS  PubMed  Google Scholar 

  2. Yu, K., Petrovsky, N., Schonbach, C., Koh, J.Y., and Brusic, V. 2002. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med 8:137–148.

    CAS  PubMed  Google Scholar 

  3. Flower, D. 2003. Towards in silico prediction of immunogenic epitopes. Trends Immunol 24:667–674.

    Article  CAS  PubMed  Google Scholar 

  4. Flower, D., and Doytchinova, I.A. 2002. Immunoinformatics and the prediction of immunogenicity. Appl Bioinformatics 1:167–176.

    CAS  PubMed  Google Scholar 

  5. Reche, P.A., and Reinherz, E.L. 2003. Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641.

    Article  CAS  PubMed  Google Scholar 

  6. David W. Gjertson, and Paul I. Terasaki, E. (Eds) 1998. HLA 1998. American Society for Histocompatibility and Immunogenetics, Lenexa.

    Google Scholar 

  7. Sette, A., and Sidney, J. 1999. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212.

    Article  CAS  PubMed  Google Scholar 

  8. Sette, A., and Sidney, J. 1998. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 10:478–482.

    Article  CAS  PubMed  Google Scholar 

  9. Bouvier, M., and Wiley, D.C. 1994. Importance of peptide amino acid and carboxyl termini to the stability of MHC class I molecules. Science 265:398–402.

    Article  CAS  PubMed  Google Scholar 

  10. Ruppert, J., Sidney, J., Celis, E., Kubo, T., Grey, H.M., and Sette, A. 1993. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74:929–937.

    Article  CAS  PubMed  Google Scholar 

  11. Reche, P.A., Glutting, J.-P., and Reinherz, E.L. 2002. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol 63:701–709.

    Article  CAS  PubMed  Google Scholar 

  12. Reche, P.A., Glutting, J.-P, Zhang, H., and Reinherz, E.L. 2004. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56:405–419

    Article  CAS  PubMed  Google Scholar 

  13. Retief, J.D. 2000. Phylogenetic analysis using PHYLIP. Methods Mol Biol 132:243–258.

    CAS  PubMed  Google Scholar 

  14. Fitch, W.M., and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155:279–284.

    Article  CAS  PubMed  Google Scholar 

  15. Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.

    CAS  PubMed  Google Scholar 

  16. Dawson, D.V., Ozgur, M., Sari, K., Ghanayem, M., and Kostyu, D.D. 2001. Ramifications of HLA class I polymorphism and population genetics for vaccine development. Genet Epidemiol 20:87–106.

    Article  CAS  PubMed  Google Scholar 

  17. Cao, K., Hollenbach, J., Shi, X., Shi, W., Chopek, M., and Fernandez-Vina, M.A. 2001. Analysis of the frequencies of HLA-A, B, and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these populations. Hum Immunol 62:1009–1030.

    Article  CAS  PubMed  Google Scholar 

  18. Doytchinova, I.A., Guan, P., and Flower, D.R. 2004. Quantitative structure-activity relationships and the prediction of MHC supermotifs. Methods 34:444–453.

    Article  CAS  PubMed  Google Scholar 

  19. Doytchinova, I.A., and Flower, D.R. 2005. In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095.

    CAS  PubMed  Google Scholar 

  20. Doytchinova, I.A., Guan, P., and Flower, D.R. 2004. Identifying human MHC supertypes using bioinformatic methods. J Immunol 172:4314–4323.

    CAS  PubMed  Google Scholar 

  21. Lund, O., Nielsen, M., Kesmir, C., Petersen, A.G., Lundegaard, C., Worning, P., Sylvester-Hvid, C., Lamberth, K., Roder, G., Justesen, S., Buus, S., and Brunak, S. 2004. Definition of supertypes for HLA molecules using clustering of specificitymatrices. Immunogenetics 55:797–810.

    Article  CAS  PubMed  Google Scholar 

  22. Parker, K.C., Bednarek, M.A., and Coligan, J.E. 1994. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side chains. J Immunol 152:163–175.

    CAS  PubMed  Google Scholar 

  23. Guan, P., Doytchinova, I.A., Zygouri, C., and Flower, D. 2003. MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31:3621–3624.

    Article  CAS  PubMed  Google Scholar 

  24. Singh, H., and Raghava, G.P. 2001. ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237.

    Article  CAS  PubMed  Google Scholar 

  25. Donnes, P., and Elofsson, A. 2002. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3:25.

    Article  PubMed  Google Scholar 

  26. Rammensee, H.G., Bachmann, J., Emmerich, N.P.N., Bacho, O.A., and Stevanovic, S. 1999. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219.

    Article  CAS  PubMed  Google Scholar 

  27. Buus, S., Lauemoller, S.L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A., Hilden, J., Holm, A., and Brunak, S. 2003. Sensitive quantitative predictions of peptide-MHC binding by a ’Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384.

    Article  CAS  PubMed  Google Scholar 

  28. Altuvia, Y., Sette, A., Sidney, J., Southwood, S., and Margalit, H. 1997. A structure based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets. Hum Immunol 58:1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro A. Reche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Reche, P.A., Reinherz, E.L. (2007). Definition of MHC Supertypes Through Clustering of MHC Peptide-Binding Repertoires. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics