Skip to main content

Difference Gel Electrophoresis Based on Lys/Cys Tagging

  • Protocol
2D PAGE: Sample Preparation and Fractionation

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 424))

Summary

Before separation, proteins of different biological samples are labeled with different fluorescent dyes, the CyDye™ DIGE Fluors. Currently three dyes with spectrally different excitation and emission wavelengths are available. This allows labeling up to three different samples, and coseparating them in one gel. The dyes can either be attached to the \(\varepsilon\)-amino side group of the lysine without derivatization of the polypeptides or to the cysteines after reduction of the disulfide bonds. For lysine labeling a so called minimal labeling approach is performed: only a low-ratio dye: protein is applied in order to prevent multiple labels per protein. Although only 3% of the proteins are tagged, the sensitivity of detection is comparable with the sensitivity of a good quality silver staining. The dyes are matched for size and charge to obtain migration of differently labeled identical proteins to the same spot positions. The spot pattern achieved with minimal labeling is similar to the pattern obtained with poststained gels. When cysteine tagging is applied, all cysteine moieties are labeled. This modification of the method affords extraordinarily high sensitivity of detection. However, because of multiple labeling, the resulting pattern will look different from nonlabeled or minimal labeled samples.

The labeled samples are mixed together before they are applied on the gel of the first dimension. After separation the gels are scanned with the multifluorescent imager at the different wavelengths. Up to three images of comigrated protein mixtures are compared and evaluated from each gel. This multiplexing technique allows the application of an internal standard for each protein in a complex mixture: One of the labels is applied on a mixture of the pooled aliquots of all samples of an experiment. By coseparating this mixture with each gel an internal standard is created for reliable and reproducible detection and assessment of changes of protein expression levels. Image analysis is performed with special software, which allows codetection of protein spots across the different samples and the internal standard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Farrell, P.H. (1975) High-resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250, 4007–4021.

    PubMed  Google Scholar 

  2. Ünlü, M., Morgan, M.E., and Minden, J.S. (1997) Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.

    Article  PubMed  Google Scholar 

  3. Alban, A., David, S., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., and Currie, I. (2003) A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman, D.B., Hill, S., Keller, J.W., Merchant, N.B., Levy, S.E, Coffey, R.J., and Caprioli, R.M. (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4, 793–811.

    Article  CAS  PubMed  Google Scholar 

  5. Shaw, J., Rowlinson, R., Nickson, J., Stone, T., Sweet, A., Williams, K., and Tonge, R. (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3, 1181–1195.

    Article  CAS  PubMed  Google Scholar 

  6. Sitek, B., Lüttges, J., Marcus, K., Klöppel, G., Schmiegel, W., Meyer, H.E., Hahn, S.A., and Stühler, K. (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5, 2665–2679.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Westermeier, R., Scheibe, B. (2008). Difference Gel Electrophoresis Based on Lys/Cys Tagging. In: Posch, A. (eds) 2D PAGE: Sample Preparation and Fractionation. Methods in Molecular Biology™, vol 424. Humana Press. https://doi.org/10.1007/978-1-60327-064-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-064-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-722-8

  • Online ISBN: 978-1-60327-064-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics