Skip to main content

Regulation of Apoptosis by the Unfolded Protein Response

  • Protocol
  • First Online:
Apoptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 559))

Summary

In eukaryotic cells, the endoplasmic reticulum (ER) serves many specialized functions including bio-synthesis and assembly of membrane and secretory proteins, calcium storage and production of lipids and sterols. As a plant for protein folding and posttranslational modification, the ER provides stringent quality control systems to ensure that only correctly folded proteins exit the ER and unfolded or misfolded proteins are retained and ultimately degraded. Biochemical, physiological, and pathological stimuli that interfere with ER function can disrupt ER homeostasis, impose stress to the ER, and subsequently cause accumulation of unfolded or misfolded proteins in the ER lumen. To deal with accumulation of unfolded or misfolded proteins, the cell has evolved highly specific signaling pathways collectively called the “unfolded protein response” (UPR) to restore normal ER functions. However, if the overload of unfolded or misfolded proteins in the ER is not resolved, the prolonged UPR will induce ER stress-associated programmed cell death, apoptosis, to protect the organism by removing the stressed cells. In this chapter, we summarize our current understanding of UPR-induced apoptosis and various methods to detect ER stress and apoptosis in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufman, R. J. (2002). Orchestrating the unfolded protein response in health and disease. J Clin Invest 110, 1389–1398

    PubMed  CAS  Google Scholar 

  2. Mori, K. (2000). Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454

    Article  PubMed  CAS  Google Scholar 

  3. Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519–529

    Article  PubMed  CAS  Google Scholar 

  4. Schroder, M., and Kaufman, R. J. (2005). The Mammalian unfolded protein response. Annu Rev Biochem 74, 739–789

    Article  PubMed  Google Scholar 

  5. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897–904

    Article  PubMed  CAS  Google Scholar 

  6. Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., et al (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7, 1165–1176

    Article  PubMed  CAS  Google Scholar 

  7. Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., et al (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619–633

    Article  PubMed  CAS  Google Scholar 

  8. Fribley, A. M., Evenchik, B., Zeng, Q., Park, B. K., Guan, J. Y., Zhang, H., et al (2006). Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281, 31440–31447

    Article  PubMed  CAS  Google Scholar 

  9. Ron, D., and Habener, J. F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant- negative inhibitor of gene transcription. Genes Dev 6, 439–453

    Article  PubMed  CAS  Google Scholar 

  10. Matsumoto, M., Minami, M., Takeda, K., Sakao, Y., and Akira, S. (1996). Ectopic expression of CHOP (GADD153). induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett 395, 143–147

    Article  PubMed  CAS  Google Scholar 

  11. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 1249–1259

    Article  PubMed  CAS  Google Scholar 

  12. Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., and Hayashi, H. (2005). TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24, 1243–1255

    Article  PubMed  CAS  Google Scholar 

  13. Sok, J., Wang, X. Z., Batchvarova, N., Kuroda, M., Harding, H., and Ron, D. (1999). CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol 19, 495–504

    PubMed  CAS  Google Scholar 

  14. Yamaguchi, H., and Wang, H. G. (2004). CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279, 45495–45502

    Article  PubMed  CAS  Google Scholar 

  15. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., et al (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12, 982–995

    Article  PubMed  CAS  Google Scholar 

  16. Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., et al (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066–3077

    Article  PubMed  CAS  Google Scholar 

  17. Wu, J., Rutkowski, D. T., Dubois, M., Swathirajan, J., Saunders, T., Wang, J., et al (2007). ATF6alpha optimizes long-term endo-plasmic reticulum function to protect cells from chronic stress. Dev Cell 13, 351–364

    Article  PubMed  CAS  Google Scholar 

  18. Tirasophon, W., Welihinda, A. A., and Kaufman, R. J. (1998). A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p). in mammalian cells. Genes Dev 12, 1812–1824

    Article  PubMed  CAS  Google Scholar 

  19. Wang, X. Z., Harding, H. P., Zhang, Y., Jolicoeur, E. M., Kuroda, M., and Ron, D. (1998). Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17, 5708–5717

    Article  PubMed  CAS  Google Scholar 

  20. Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., et al (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96.

    Article  PubMed  CAS  Google Scholar 

  21. Lee, A. H., Iwakoshi, N. N., and Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23, 7448–7459

    Article  PubMed  CAS  Google Scholar 

  22. Shen, X., Ellis, R. E., Lee, K., Liu, C. Y., Yang, K., Solomon, A., et al (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893–903.

    Article  PubMed  CAS  Google Scholar 

  23. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891.

    Article  PubMed  CAS  Google Scholar 

  24. Urano, F., Bertolotti, A., and Ron, D. (2000). IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113, 3697–3702.

    PubMed  CAS  Google Scholar 

  25. Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., et al (2001). Activation of caspase-12, an endoplastic reticulum (ER). resident caspase, through tumor necrosis factor receptor-associated factor 2- dependent mechanism in response to the ER stress. J Biol Chem 276, 13935–13940.

    PubMed  CAS  Google Scholar 

  26. Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., et al (1998). ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2, 389–395

    Article  PubMed  CAS  Google Scholar 

  27. Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., et al (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16, 1345–1355

    Article  PubMed  CAS  Google Scholar 

  28. Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252

    Article  PubMed  CAS  Google Scholar 

  29. Hetz, C., Bernasconi, P., Fisher, J., Lee, A. H., Bassik, M. C., Antonsson, B., et al (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312, 572–576

    Article  PubMed  CAS  Google Scholar 

  30. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., et al (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666

    Article  PubMed  CAS  Google Scholar 

  31. Gunn, K. E., Gifford, N. M., Mori, K., and Brewer, J. W. (2004). A role for the unfolded protein response in optimizing antibody secretion. Mol Immunol 41, 919–927

    Article  PubMed  CAS  Google Scholar 

  32. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., et al (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162, 59–69

    Article  PubMed  CAS  Google Scholar 

  33. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W., and Reed, J. C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53, 4701–4714

    PubMed  CAS  Google Scholar 

  34. Nakagawa, T., and Yuan, J. (2000). Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887–894

    Article  PubMed  CAS  Google Scholar 

  35. Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., et al (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276, 33869–33874

    Article  PubMed  CAS  Google Scholar 

  36. Tan, Y., Dourdin, N., Wu, C., De Veyra, T., Elce, J. S., and Greer, P. A. (2006). Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281, 16016–16024

    Article  PubMed  CAS  Google Scholar 

  37. Saleh, M., Mathison, J. C., Wolinski, M. K., Bensinger, S. J., Fitzgerald, P., Droin, N., et al (2006). Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440, 1064–1068

    Article  PubMed  CAS  Google Scholar 

  38. Fischer, H., Koenig, U., Eckhart, L., and Tschachler, E. (2002). Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293, 722–726

    Article  PubMed  CAS  Google Scholar 

  39. Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2)., 233–249

    Article  PubMed  CAS  Google Scholar 

  40. Feng, B., Yao, P. M., Li, Y., Devlin, C. M., Zhang, D., Harding, H. P., et al (2003). The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5, 781–792

    Article  PubMed  CAS  Google Scholar 

  41. Harding, H. P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., et al (2001). Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell 7, 1153–1163

    Article  PubMed  CAS  Google Scholar 

  42. Zhou, J., Lhotak, S., Hilditch, B. A., and Austin, R. C. (2005). Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 111, 1814–1821

    Article  PubMed  CAS  Google Scholar 

  43. Fribley, A., Zeng, Q., and Wang, C. Y. (2004). Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 24, 9695–9704

    Article  PubMed  CAS  Google Scholar 

  44. Schwartzman, R. A., and Cidlowski, J. A. (1993). Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14, 133–151

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Portions of this work were supported by NIH grants DK042394, HL052173, and HL057346. RJK is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randal J. Kaufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fribley, A., Zhang, K., Kaufman, R.J. (2009). Regulation of Apoptosis by the Unfolded Protein Response. In: Erhardt, P., Toth, A. (eds) Apoptosis. Methods in Molecular Biology, vol 559. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-017-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-017-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-016-8

  • Online ISBN: 978-1-60327-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics