Skip to main content

Analysis of Distant Communication on Defined Chromatin Templates In Vitro

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

Regulation of many biological processes in eukaryotes involves distant communication between the regulatory DNA sequences (e.g., enhancers) and their targets over the DNA regions organized in chromatin. However previously developed methods for analysis of communication in chromatin in vitro are artifact-prone and/or do not allow analysis of communication on physiologically relevant, saturated arrays of nucleosomes. Here we describe a method for quantitative analysis of the rate of distant communication in cis on saturated arrays of nucleosomes capable of forming the 30-nm chromatin fibers in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Laat, W., and Grosveld, F. (2003). Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459.

    Article  PubMed  CAS  Google Scholar 

  2. Dean, A. (2004). Chromatin remodelling and the interaction between enhancers and promoters in the beta-globin locus. Brief Funct. Genomic Proteomic 2, 344–354.

    Article  PubMed  CAS  Google Scholar 

  3. Tsytsykova, A. V., Rajsbaum, R., Falvo, J. V., Ligeiro, F., Neely, S. R., and Goldfeld, A. E. (2007). Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers. Proc. Natl. Acad. Sci. U S A. 104, 16850–16855.

    Article  PubMed  CAS  Google Scholar 

  4. Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626.

    Article  PubMed  CAS  Google Scholar 

  5. Kooren, J., Palstra, R. J., Klous, P., Splinter, E., von Lindern, M., Grosveld, F., and de Laat, W. (2007). Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J. Biol. Chem. 282, 16544–16552.

    Article  PubMed  CAS  Google Scholar 

  6. Splinter, E., Heath, H., Kooren, J., Palstra, R. J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  7. Ringrose, L., Chabanis, S., Angrand, P. O., Woodroofe, C., and Stewart, A. F. (1999). Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA flexibility at short distances. EMBO J. 18, 6630–6641.

    Article  PubMed  CAS  Google Scholar 

  8. Gaszner, M., and Felsenfeld, G. (2006). Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet. 7, 703–713.

    Article  PubMed  CAS  Google Scholar 

  9. Shore, D., Langowski, J., and Baldwin, R. L. (1981). DNA flexibility studied by covalent closure of short fragments into circles. Proc. Natl. Acad. Sci. U S A. 78, 4833–4837.

    Article  PubMed  CAS  Google Scholar 

  10. Cloutier, T. E., and Widom, J. (2004). Spontaneous sharp bending of double-stranded DNA. Mol. Cell. 14, 355–362.

    Article  PubMed  CAS  Google Scholar 

  11. Crothers, D. M., Drak, J., Kahn, J. D., and Levene, S. D. (1992). DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods Enzymol. 212, 3–29.

    Article  PubMed  CAS  Google Scholar 

  12. Stein, A., Dalal, Y., and Fleury, T. J. (2002). Circle ligation of in vitro assembled chromatin indicates a highly flexible structure. Nucleic Acids Res. 30, 5103–5109.

    Article  PubMed  CAS  Google Scholar 

  13. Lowary, P. T., and Widom, J. (1998). New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42.

    Article  PubMed  CAS  Google Scholar 

  14. Thastrom, A., Lowary, P. T., Widlund, H. R., Cao, H., Kubista, M., and Widom, J. (1999). Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 288, 213–229.

    Article  PubMed  CAS  Google Scholar 

  15. Rubtsov, M. A., Polikanov, Y. S., Bondarenko, V. A., Wang, Y. H., and Studitsky, V. M. (2006). Chromatin structure can strongly facilitate enhancer action over a distance. Proc. Natl. Acad. Sci. U S A. 103, 17690–17695.

    Article  PubMed  CAS  Google Scholar 

  16. Polikanov, Y. S., Rubtsov, M. A., and Studitsky, V. M. (2007). Biochemical analysis of enhancer–promoter communication in chromatin. Methods. 41, 250–258.

    Article  PubMed  CAS  Google Scholar 

  17. Knezetic, J. A., Jacob, G. A., and Luse, D. S.(1988). Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initiation of transcription on nucleosomal templates. Mol. Cell. Biol. 8, 3114–3121.

    PubMed  CAS  Google Scholar 

  18. Laybourn, P. J., and Kadonaga, J. T. (1992). Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science. 257, 1682–1685.

    Article  PubMed  CAS  Google Scholar 

  19. Ptashne, M., and Gann, A. A. (1990). Activators and targets. Nature. 346, 329–331.

    Article  PubMed  CAS  Google Scholar 

  20. Bondarenko, V. A., Jiang, Y. I., and Studitsky, V. M. (2003). Rationally designed insulator-like elements can block enhancer action in vitro. EMBO J. 22, 4728–4737.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, Y., Bondarenko, V., Ninfa, A., and Studitsky, V. M. (2001). DNA supercoiling allows enhancer action over a large distance. Proc. Natl. Acad. Sci. U S A. 98, 14883–14888.

    Article  PubMed  CAS  Google Scholar 

  22. Popham, D. L., Szeto, D., Keener, J., and Kustu, S. (1989). Function of a bacterial activator protein that binds to transcriptional enhancers. Science. 243, 629–635.

    Article  PubMed  CAS  Google Scholar 

  23. Bondarenko, V. A., Liu, Y. V., Jiang, Y. I., and Studitsky, V. M. (2003). Communication over a large distance: enhancers and insulators. Biochem. Cell. Biol. 81, 241–251.

    Article  PubMed  CAS  Google Scholar 

  24. Bondarenko, V., Liu, Y. V., Ninfa, A. J., and Studitsky, V. M. (2003). Assay of prokaryotic enhancer activity over a distance in vitro. Methods Enzymol. 370, 324–337.

    Article  PubMed  CAS  Google Scholar 

  25. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y., and Gralla, J. D. (2000). The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J. Bacteriol. 182, 4129–4136.

    Article  PubMed  CAS  Google Scholar 

  26. Sasse-Dwight, S., and Gralla, J. D. (1988). Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc. Natl. Acad. Sci. U S A. 85, 8934–8938.

    Article  PubMed  CAS  Google Scholar 

  27. Ninfa, A. J., Reitzer, L. J., and Magasanik, B. (1987). Initiation of transcription at the bacterial glnAp2 promoter by purified E. coli components is facilitated by enhancers. Cell. 50, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  28. Ninfa, A. J., and Magasanik, B. (1986). Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. U S A. 83, 5909–5913.

    Article  PubMed  CAS  Google Scholar 

  29. Keener, J., and Kustu, S. (1988). Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. U S A. 85, 4976–4980.

    Article  PubMed  CAS  Google Scholar 

  30. Porter, S. C., North, A. K., Wedel, A. B., and Kustu, S. (1993). Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev. 7, 2258–2273.

    Article  PubMed  CAS  Google Scholar 

  31. Wedel, A., and Kustu, S. (1995). The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev. 9, 2042–2052.

    Article  PubMed  CAS  Google Scholar 

  32. Wyman, C., Rombel, I., North, A. K., Bustamante, C., and Kustu, S. (1997). Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science. 275, 1658–1661.

    Article  PubMed  CAS  Google Scholar 

  33. Buck, M., and Cannon, W. (1992). Activator-independent formation of a closed complex between sigma 54- holoenzyme and nifH and nifU promoters of Klebsiella pneumoniae. Mol. Microbiol. 6, 1625–1630.

    Article  PubMed  CAS  Google Scholar 

  34. Su, W., Porter, S., Kustu, S., and Echols, H. (1990). DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc. Natl. Acad. Sci. U S A. 87, 5504–5508.

    Article  PubMed  CAS  Google Scholar 

  35. Rippe, K., Guthold, M., von Hippel, P. H., and Bustamante, C. (1997). Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J. Mol. Biol. 270, 125–138.

    Article  PubMed  CAS  Google Scholar 

  36. Polikanov, Y. S., Bondarenko, V. A., Tchernaenko, V., Jiang, Y. I., Lutter, L. C., Vologodskii, A., and Studitsky, V. M. (2007). Probability of the site juxtaposition determines the rate of protein-mediated DNA looping. Biophys. J. 93, 2726–2731.

    Article  PubMed  CAS  Google Scholar 

  37. Thomas, J. O., and Butler, P. J. (1980). Changes in chromatin folding in solution. J. Mol. Biol. 144, 89–93.

    Article  PubMed  CAS  Google Scholar 

  38. Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R. R., and Richmond, T. J. (2004). Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science. 306, 1571–1573.

    Article  PubMed  CAS  Google Scholar 

  39. Schalch, T., Duda, S., Sargent, D. F., and Richmond, T. J. (2005). X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature. 436, 138–141.

    Article  PubMed  CAS  Google Scholar 

  40. Huynh, V. A., Robinson, P. J., and Rhodes, D. (2005). A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. J. Mol. Biol. 345, 957–968.

    Article  PubMed  CAS  Google Scholar 

  41. Walter, W., Kireeva, M. L., Tchernajenko, V., Kashlev, M., and Studitsky, V. M. (2003). Assay of the fate of the nucleosome during transcription by RNA polymerase II. Methods Enzymol. 371, 564–577.

    Article  PubMed  CAS  Google Scholar 

  42. Walter, W., and Studitsky, V. M. (2004). Construction, analysis, and transcription of model nucleosomal templates. Methods. 33, 18–24.

    Article  PubMed  CAS  Google Scholar 

  43. Studitsky, V. M. (1999). Preparation and analysis of positioned nucleosomes. Methods Mol. Biol. 119, 17–26.

    PubMed  CAS  Google Scholar 

  44. Polach, K. J., and Widom, J. (1999). Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278–298.

    Article  PubMed  CAS  Google Scholar 

  45. Feng, J., Goss, T. J., Bender, R. A., and Ninfa, A. J. (1995). Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. J. Bacteriol. 177, 5523–5534.

    PubMed  CAS  Google Scholar 

  46. Bondarenko, V., Liu, Y., Ninfa, A., and Studitsky, V. M. (2002). Action of prokaryotic enhancer over a distance does not require continued presence of promoter-bound sigma54 subunit. Nucleic Acids Res. 30, 636–642.

    Article  PubMed  CAS  Google Scholar 

  47. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  48. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., and Richmond, T. J. (2002). Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF (0549593) and NIH (GM58650) grants to V.M.S. We would like to thank Dr. T. J. Richmond for providing the12Ă—177-601 plasmid containing an array of twelve 601 NPSs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily M. Studitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Polikanov, Y.S., Studitsky, V.M. (2009). Analysis of Distant Communication on Defined Chromatin Templates In Vitro. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics