Skip to main content

Proteomic Analysis of Protein Phosphorylation and Ubiquitination in Alzheimer’s Disease

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 566))

Summary

Posttranslational modifications such as phosphorylation and ubiquitination serve, independently or together, as gatekeepers of protein transport and turnover in normal and disease physiologies. Aberrant protein phosphorylation is one of the defining pathological hallmarks of more than 20 different neurodegenerative disorders, including Alzheimer’s disease (AD). The disruption of the phosphorylation of neurotransmitter receptors has been implicated as one of the causal factors of impaired memory function in AD (1–3). Another feature of AD is the aberrant accumulation of proteins that are normally degraded by the ubiquitin proteasome system upon being conjugated to ubiquitin. Thus, elucidating the protein targets of phosphorylation and ubiquitination that can serve as AD biomarkers will aid in the development of effective therapeutic approaches to the treatment of AD. This chapter provides details pertaining to the qualitative and quantitative liquid chromatography tandem mass spectrometry-based analysis of an affinity purified, phosphorylated, and ubiquitinated protein, paired-helical filament tau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sze C, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. (2001) N-Methyl- d-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci 182, 151–159.

    Article  PubMed  CAS  Google Scholar 

  2. Zhao D, Watson JB, Xie CW. (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92, 2853–2858.

    Article  PubMed  CAS  Google Scholar 

  3. Palop JJ, Chin J, Bien-Ly N, et al. (2005) Vulnerability of dentate granule cells to disruption of arc expression in human amyloid precursor protein transgenic mice. J Neurosci 25, 9686–9693.

    Article  PubMed  CAS  Google Scholar 

  4. Braak H, Braak E, Strothjohann M. (1994) Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci Lett 171, 1–4.

    Article  PubMed  CAS  Google Scholar 

  5. Lim J, Lu KP. (2005) Pinning down phosphorylated tau and tauopathies. Biochim Biophys Acta 1739, 311–322.

    Article  PubMed  CAS  Google Scholar 

  6. Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112, 813–838.

    Article  PubMed  CAS  Google Scholar 

  7. Lee G, Thangavel R, Sharma VM, et al. (2004) Phosphorylation of tau by fyn: Implications for Alzheimer’s disease. J Neurosci 24, 2304–2312.

    Article  PubMed  CAS  Google Scholar 

  8. Yoshimura Y, Ichinose T, Yamauchi T. (2003) Phosphorylation of tau protein to sites found in Alzheimer’s disease brain is catalyzed by Ca2+/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett 353, 185–188.

    Article  PubMed  CAS  Google Scholar 

  9. Liu F, Zaidi T, Iqbal K, et al. (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512, 101–106.

    Article  PubMed  CAS  Google Scholar 

  10. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33, 95–130.

    Article  PubMed  CAS  Google Scholar 

  11. Lee VM. (1996) Regulation of tau phosphorylation in Alzheimer’s disease. Ann NY Acad Sci 777, 107–113.

    Article  PubMed  CAS  Google Scholar 

  12. Holzer M, Holzapfel HP, Zedlick D, Bruckner MK, Arendt T. (1994) Abnormally phosphorylated tau protein in Alzheimer’s disease: Heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 63, 499–516.

    Article  PubMed  CAS  Google Scholar 

  13. Goedert M. (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16, 460–465.

    Article  PubMed  CAS  Google Scholar 

  14. Hampel H, Burger K, Pruessner JC, et al. (2005) Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch Neurol 62, 770–773.

    Article  PubMed  Google Scholar 

  15. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol (Berl) 103, 26–35.

    Article  CAS  Google Scholar 

  16. de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM. (2004) Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog Neurobiol 74, 249–270.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang JY, Liu SJ, Li HL, Wang JZ. (2005) Microtubule-associated protein tau is a substrate of ATP/Mg(2+)-dependent proteasome protease system. J Neural Transm 112, 547–555.

    Article  PubMed  CAS  Google Scholar 

  18. Shimura H, Schwartz D, Gygi SP, Kosik KS. (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279, 4869–4876.

    Article  PubMed  CAS  Google Scholar 

  19. Iqbal K, Grundke-Iqbal I. (1991) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer’s disease. Mol Neurobiol 5, 399–410.

    Article  PubMed  CAS  Google Scholar 

  20. Kohnken R, Buerger K, Zinkowski R, et al. (2000) Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 287, 187–190.

    Article  PubMed  CAS  Google Scholar 

  21. Hampel H, Buerger K, Kohnken R, et al. (2001) Tracking of Alzheimer’s disease progression with cerebrospinal fluid tau protein phosphorylated at threonine 231. Ann Neurol 49, 545–546.

    Article  PubMed  CAS  Google Scholar 

  22. Buerger K, Teipel SJ, Zinkowski R, et al. (2002) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurology 59, 627–629.

    Article  PubMed  CAS  Google Scholar 

  23. Buerger K, Zinkowski R, Teipel SJ, et al. (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59, 1267–1272.

    Article  PubMed  Google Scholar 

  24. Cripps D, Thomas SN, Jeng Y, et al. (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281, 10825–10838.

    Article  PubMed  CAS  Google Scholar 

  25. Weaver CL, Espinoza M, Kress Y, Davies P. (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21, 719–727.

    Article  PubMed  CAS  Google Scholar 

  26. Vincent I, Zheng JH, Dickson DW, Kress Y, Davies P. (1998) Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol Aging 19, 287–296.

    Article  PubMed  CAS  Google Scholar 

  27. Mayya V, Rezaul K, Cong YS, Han D. (2005) Systematic comparison of a two-dimensional ion trap and a three-dimensional ion trap mass spectrometer in proteomics. Mol Cell Proteomics 4, 214–223.

    PubMed  CAS  Google Scholar 

  28. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  29. Chen EI, Cociorva D, Norris JL, Yates JR, III. (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6, 2529–2538.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Peter Davies for providing the affinity-purified PHF-tau samples that we analyzed utilizing the methods detailed in this chapter. This work was supported by National Institutes of Health grants MH59786 and AG25323 (A.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefani N. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thomas, S.N., Cripps, D., Yang, A.J. (2009). Proteomic Analysis of Protein Phosphorylation and Ubiquitination in Alzheimer’s Disease. In: Ottens, A., Wang, K. (eds) Neuroproteomics. Methods in Molecular Biology, vol 566. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-562-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-562-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-84-8

  • Online ISBN: 978-1-59745-562-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics