Skip to main content

Protein Aggregate Characterization in Models of Neurodegenerative Disease

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 566))

Summary

A pathological hallmark of many neurodegenerative diseases is the presence of protein aggregates. Transgenic mice that recapitulate this pathology are a valuable resource to isolate these proteins for detailed study. One aspect of our research program is to characterize and quantify aggregates β-amyloid (Aβ) peptides, superoxide dismutase 1 (SOD1), and huntingtin (htt) that comprise pathologic lesions found in Alzheimer’s disease, familial amyotrophic lateral sclerosis, and Huntington’s disease, respectively. In this chapter, we describe methods, based on sequential detergent extraction and ultracentrifugation, to isolate and analyze these protein aggregates. These methods have been applied to human tissues to some extent, but have been highly useful in studies involving transgenic mouse models of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weidemann, A., König, G., Bunke, D., Fischer, P., Salbaum, J. M., Masters, C. L., and Beyreuther, K. (1989). Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57,115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Jankowsky, J. L., Savonenko, A., Schilling, G., Wang, J., Xu, G., and Borchelt, D. R. (2002). Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. Curr Neurol Neurosci Rep 2,457–464.

    Article  PubMed  Google Scholar 

  3. Valentine, J. S., Hart, P. J. (2003). Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 100,3617–3622.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, J., Xu, G., Gonzales, V., Coonfield, M., Fromholt, D., Copeland, N. G., Jenkins, N. A., and Borchelt, D. R. (2002). Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10,128–138.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, J., Xu, G., and Borchelt, D. R. (2002). High molecular weight complexes of mutant superoxide dismutase 1: Age- dependent and tissue-specific accumulation. Neurobiol Dis 9,139–148.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, J., Slunt, H., Gonzales, V., Fromholt, D., Coonfield, M., Copeland, N. G., Jenkins, N. A., and Borchelt, D. R. (2003). Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12,2753–2764.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, J., Xu, G., Li, H., Gonzales, V., Fromholt, D., Karch, C., Copeland, N. G., Jenkins, N. A., and Borchelt, D. R. (2005). Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: {alpha}B-crystallin modulates aggregation. Hum Mol Genet 14,2335–2347.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, J., Xu, G., Slunt, H. H., Gonzales, V., Coonfield, M., Fromholt, D., Copeland, N. G., Jenkins, N. A., and Borchelt, D. R. (2005). Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol Dis 20,943–952.

    Article  PubMed  CAS  Google Scholar 

  9. Schilling, G., Klevytska, A., Tebbenkamp, A. T., Juenemann, K., Cooper, J., Gonzales, V., Slunt, H., Poirer, M., Ross, C. A., and Borchelt, D. R. (2007). Characterization of huntingtin pathologic fragments in human Huntington disease, transgenic mice, and cell models. J Neuropathol Exp Neurol 66,313–320.

    Article  PubMed  CAS  Google Scholar 

  10. Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V. L., Dawson, T. M., and Ross, C. A. (2001). Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291,2423–2428.

    Article  PubMed  CAS  Google Scholar 

  11. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G. P., Davies, S. W., Lehrach, H., and Wanker, E. E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90,549–558.

    Article  PubMed  CAS  Google Scholar 

  12. Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., Hasenbank, R., Lehrach, H., and Wanker, E. E. (1999). Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: Implications for Huntington’s disease pathology. Proc Natl Acad Sci USA 96,4604–4609.

    Article  PubMed  CAS  Google Scholar 

  13. Xu, G., Gonzales, V., and Borchelt, D. R. (2002). Rapid detection of protein aggregates in the brains of Alzheimer patients and transgenic mouse models of amyloidosis. Alzheimer Dis Assoc Disord 16,191–195.

    Article  PubMed  CAS  Google Scholar 

  14. Bolton, D. C., McKinley, M. P., and Prusiner, S. B. (1982) Identification of a protein that purifies with the scrapie prion. Science 218,1309–1311.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer, R. K., McKinley, M. P., Bowman, K. A., Braunfeld, M. B., Barry, R. A., and Prusiner, S. B. (1986). Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 83,2310–2314.

    Article  PubMed  CAS  Google Scholar 

  16. McKinley, M. P., Meyer, R. K., Kenaga, L., Rahbar, F., Cotter, R., Serban, A., and Prusiner, S. B. (1991). Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol 65,1340–1351.

    PubMed  CAS  Google Scholar 

  17. Shaw BF, Lelie HL, Durazo A, Nersissian AM, Xu G, Chan PK, Gralla EB, Tiwari A, Hayward LJ, Borchelt DR, Valentine JS, Whitelegge JP. Detergent-insoluble aggregates associated with amyotrophic lateral sclerosis in transgenic mice contain primarily full-length, unmodified superoxide dismutase-1. J Biol Chem. 2008 Mar 28;283(13):8340–50. Epub 2008 Jan 11. PubMed PMID: 18192269; PubMed Central PMCID: PMC2276386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tebbenkamp, A.T.N., Borchelt, D.R. (2009). Protein Aggregate Characterization in Models of Neurodegenerative Disease. In: Ottens, A., Wang, K. (eds) Neuroproteomics. Methods in Molecular Biology, vol 566. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-562-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-562-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-84-8

  • Online ISBN: 978-1-59745-562-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics