Skip to main content

Delivery of Phosphorodiamidate Morpholino Antisense Oligomers in Cancer Cells

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

Phosphorodiamidate morpholino oligomers (PMO), which have a neutral chemistry, are extensively being used as tools for selective inhibition of gene expression in cell culture models and are currently in human clinical trials. PMO oligomers possess a unique structure, in which the deoxyribose moiety of DNA is replaced with a six-membered morpholine ring and the charged phosphodiester internucleoside linkages are replaced with neutral phosphorodiamidate linkages. PMO internalization in uptake-permissive cells has been observed to be specific, saturable, and energy-dependent, suggesting a receptor-mediated uptake mechanism. Understanding PMO transport should facilitate the design of more effective synthetic antisense oligomers as therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nasevicius A, Ekker SC. (2000) Effective targeted gene “knockdown” in zebrafish. Nat Genet 26:216–220.

    Article  PubMed  CAS  Google Scholar 

  2. Sahu NK, Shilakari G, Nayak A, Kohli DV. (2007) Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr Pharm Biotechnol 8:291–304.

    Article  PubMed  CAS  Google Scholar 

  3. Tillman LG, Geary RS, Hardee GE. (2008) Oral delivery of antisense oligonucleotides in man. J Pharm Sci 97:225–236.

    Article  PubMed  CAS  Google Scholar 

  4. Stein CA, Benimetskaya L, Mani S. (2005) Antisense strategies for oncogene inactivation. Semin Oncol 32:563–572.

    Article  PubMed  CAS  Google Scholar 

  5. Ghosh C, Stein D, Weller D, Iversen P. (2000) Evaluation of antisense mechanisms of action. Methods Enzymol 313:135–143.

    Article  PubMed  CAS  Google Scholar 

  6. Arora V, Devi GR, Iversen PL. (2004) Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 5:431–439.

    Article  PubMed  CAS  Google Scholar 

  7. Summerton J. (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158.

    PubMed  CAS  Google Scholar 

  8. Summerton J, Weller D. (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195.

    Article  PubMed  CAS  Google Scholar 

  9. Giles RV, Spiller DG, Clark RE, Tidd DM. (1999) Antisense morpholino oligonucleotide analog induces missplicing of C-myc mRNA. Antisense Nucleic Acid Drug Dev 9:213–220.

    Article  PubMed  CAS  Google Scholar 

  10. Aartsma-Rus A, van Ommen GJ. (2007) Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13:1609–1624.

    Article  PubMed  CAS  Google Scholar 

  11. Stein CA. (1997) Controversies in the cellular pharmacology of oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev 7:207–209.

    Article  PubMed  CAS  Google Scholar 

  12. Hans SS, Hans BA, Dhillon R, Dmuchowski C, Glover J. (1998) Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency. Am Surg 64:432–436.

    PubMed  CAS  Google Scholar 

  13. Biessen EA, Vietsch H, Kuiper J, Bijsterbosch MK, Berkel TJ. (1998) Liver uptake of phosphodiester oligodeoxynucleotides is mediated by scavenger receptors. Mol Pharmacol 53:262–269.

    PubMed  CAS  Google Scholar 

  14. Yakubov LA, Deeva EA, Zarytova VF, Ivanova EM, Ryte AS, Yurchenko LV,. (1989) Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci USA 86:6454–6458.

    Article  PubMed  CAS  Google Scholar 

  15. Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C,. (1989) Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 86:3474–3478.

    Article  PubMed  CAS  Google Scholar 

  16. Benimetskaya L, Loike JD, Khaled Z, Loike G, Silverstein SC, Cao L,. (1997) Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nat Med 4:414–420.

    Article  Google Scholar 

  17. Laktionov PP, Dazard JE, Vives E, Rykova EY, Piette J, Vlassov VV,. (1999) Characterization of membrane oligonucleotide-binding proteins and oligonucleotide uptake in keratinocytes. Nucleic Acids Res 27:2315–2324.

    Article  PubMed  CAS  Google Scholar 

  18. de Diesbach P, N'Kuli F, Delmee M, Courtoy PJ. (2003) Infection by Mycoplasma hyorhinis strongly enhances uptake of antisense oligonucleotides: a reassessment of receptor-mediated endocytosis in the HepG2 cell line. Nucleic Acids Res 31:886–892.

    Article  PubMed  CAS  Google Scholar 

  19. Gray GD, Basu S, Wickstrom E. (1997) Transformed and immortalized cellular uptake of oligodeoxynucleoside phosphorothioates, 3′-alkylamino oligodeoxynucleotides, 2′-O-methyl oligoribonucleotides, oligodeoxynucleoside methylphosphonates, and peptide nucleic acids. Biochem Pharmacol 53:1465–1476.

    Article  PubMed  CAS  Google Scholar 

  20. Levis JT, Butler WO, Tseng BY, Ts'o PO. (1995) Cellular uptake of oligodeoxyribonucleoside methylphosphonates. Antisense Res Dev 5:251–259.

    PubMed  CAS  Google Scholar 

  21. Delong RK, Miller PS. (1996) Inhibition of human collagenase activity by antisense oligonucleoside methylphosphonates. Antisense Nucleic Acid Drug Dev 6:273–280.

    Article  PubMed  CAS  Google Scholar 

  22. Partridge M, Vincent A, Matthews P, Puma J, Stein D, Summerton J. (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 6:169–175.

    Article  PubMed  CAS  Google Scholar 

  23. Ghosh C, Iversen PL. (2000) Intracellular delivery strategies for antisense phosphorodiamidate morpholino oligomers. Antisense Nucleic Acid Drug Dev 10:263–274.

    Article  PubMed  CAS  Google Scholar 

  24. Morcos PA. (2001) Achieving efficient delivery of morpholino oligos in cultured cells. Genesis 30:94–102.

    Article  PubMed  CAS  Google Scholar 

  25. Hudziak RM, Summerton J, Weller DD, Iversen PL. (2000) Antiproliferative effects of steric blocking phosphorodiamidate morpholino antisense agents directed against c-myc. Antisense Nucleic Acid Drug Dev 10:163–176.

    Article  PubMed  CAS  Google Scholar 

  26. Arora V, Iversen PL. (2000) Antisense oligonucleotides targeted to the p53 gene modulate liver regeneration in vivo. Drug Metab Dispos 28:131–138.

    PubMed  CAS  Google Scholar 

  27. Arora V, Iversen PL. (2001) Redirection of drug metabolism using antisense technology. Curr Opin Mol Ther 3:249–257.

    PubMed  CAS  Google Scholar 

  28. Arora V, Knapp DC, Reddy MT, Weller DD, Iversen PL. (2002) Bioavailability and efficacy of antisense morpholino oligomers targeted to c-myc and cytochrome P-450 3A2 following oral administration in rats. J Pharm Sci 91:1009–1018.

    Article  PubMed  CAS  Google Scholar 

  29. Arora V, Cate ML, Ghosh C, Iversen PL. (2002) Phosphorodiamidate morpholino antisense oligomers inhibit expression of human cytochrome P450 3A4 and alter selected drug metabolism. Drug Metab Dispos 7:757–762.

    Article  Google Scholar 

  30. Arora V, Hannah TL, Iversen PL, Brand RM. (2002) Transdermal use of phosphorodiamidate morpholino oligomer AVI-4472 inhibits cytochrome P450 3A2 activity in male rats. Pharm Res 10:465–1470.

    Google Scholar 

  31. Devi GR, Oldenkamp JR, London CA, Iversen PL. (2002) Inhibition of human chorionic gonadotropin beta-subunit modulates the mitogenic effect of c-myc in human prostate cancer cells. Prostate 53:200–210.

    Article  PubMed  CAS  Google Scholar 

  32. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Devi GR. (2003) A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 10:823–832.

    Article  PubMed  CAS  Google Scholar 

  33. Iversen PL, Arora V, Acker AJ, Mason DH, Devi GR. (2003) Efficacy of antisense morpholino oligomer targeted to c-myc in prostate cancer xenograft murine model and a Phase I safety study in humans. Clin Cancer Res 9:2510–2519.

    PubMed  CAS  Google Scholar 

  34. Amantana A, London CA, Iversen PL, Devi GR. (2004) X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3:699–707.

    PubMed  CAS  Google Scholar 

  35. Sekhon HS, London CA, Sekhon M, Iversen PL, Devi GR. (2007) c-MYC antisense phosphosphorodiamidate morpholino oligomer inhibits lung metastasis in a murine tumor model. Lung Cancer Dec 18 (Epub ahead of publication).

    Google Scholar 

  36. Suwanmanee T, Sierakowska H, Lacerra G, Svasti S, Kirby S, Walsh CE,. (2002) Restoration of human beta-globin gene expression in murine and human IVS2–654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol 62:545–553.

    Article  PubMed  CAS  Google Scholar 

  37. Suwanmanee T, Sierakowska H, Fucharoen S, Kole R. (2002) Repair of a splicing defect in erythroid cells from patients with beta-thalassemia/HbE disorder. Mol Ther 6:718–726.

    Article  PubMed  CAS  Google Scholar 

  38. Kang SH, Cho MJ, Kole R. (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development.Biochemistry 37:6235–6239.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Katherine Aird and Rami Ghanayem for editorial and technical assistance and Dr. Patrick Iversen (Avi BioPharma Inc.). Some of the work presented here was supported by Department of Defense (DOD) grants DAMD17-01-1-0017 (GRD) and W81XWH-07-1-0392 (GRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayathri R. Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Devi, G.R. (2009). Delivery of Phosphorodiamidate Morpholino Antisense Oligomers in Cancer Cells. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics