Skip to main content

Predicting Riboswitch Regulation on a Genomic Scale

  • Protocol
  • First Online:
Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

Summary

Riboswitches are vital components of many genomes. Covariance model searches for the characteristic architectures of riboswitch aptamer domains can be used to predict new examples of these structured RNAs. Since riboswitches generally function as cis-regulatory elements, examining the genomic contexts of these hits is critical for evaluating their biological relevance. With these two sources of comparative support, it is possible to identify riboswitches accurately from sequence information alone. Annotating riboswitches on a genomic scale enables more precise functions to be assigned to the proteins that they regulate, better defines their conserved aptamer structures by identifying diverged variants, and provides insight into how the genetic regulation of fundamental metabolic processes varies among species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winkler, W. C. and Breaker, R. R. (2005). Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517.

    Article  PubMed  CAS  Google Scholar 

  2. Barrick, J. E. and Breaker, R. R. (2007). The distributions, mechanisms,and structures of metabolite-binding riboswitches. Genome Biol. 8(11), R239

    Article  PubMed  Google Scholar 

  3. Sudarsan, N., Barrick, J.E. and Breaker, R. R. (2003). Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647.

    Google Scholar 

  4. Eddy, S. R. and Durbin, R. (1994). RNA sequence analysis using covariance models. Nucleic Acids Res. 22, 2079–2088.

    Article  PubMed  CAS  Google Scholar 

  5. Nawrocki, E. P. and Eddy, S. R. (2007). Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol. 3, e56.

    Article  PubMed  Google Scholar 

  6. Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S. R. and Bateman, A. (2005). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124.

    Article  PubMed  CAS  Google Scholar 

  7. Griffiths-Jones, S. (2007). Annotating noncoding RNA genes. Annu. Rev. Genomics Hum. Genet. 8, 279–298.

    Article  PubMed  CAS  Google Scholar 

  8. Rodionov, D. A., Vitreschak, A. G., Mironov, A. A. and Gelfand, M. S. (2002). Comparative genomics of thiamin biosynthesis in procaryotes: new genes and regulatory mechanisms. J. Biol. Chem. 277, 48949–48959.

    Article  PubMed  CAS  Google Scholar 

  9. Stülke, J. (2002). Control of transcription termination in bacteria by RNA-binding proteins that modulate RNA structures. Arch Microbiol 177, 433–440.

    Article  PubMed  Google Scholar 

  10. Hammann, C. and Westhof, E. (2007). Searching genomes for ribozymes and riboswitches. Genome Biol. 8, 210.

    Article  PubMed  Google Scholar 

  11. Barrick, J. E., Corbino, K. A., Winkler, W. C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J. K. and Breaker, R. R. (2004). New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. U.S.A. 101, 6421–6426.

    Article  PubMed  CAS  Google Scholar 

  12. Corbino, K. A., Barrick, J. E., Lim, J., Welz, R., Tucker, B. J., Puskarz, I., Mandal, M., Rudnick, N. D. and Breaker, R. R. (2005). Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol. 6, R70.

    Article  PubMed  Google Scholar 

  13. Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., Kim, J. N., Gore, J., Wang, J. X., Lee, E. R., Block, K. F., Sudarsan, N., Neph, S., Tompa, M., Ruzzo, W. L. and Breaker, R. R. (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res. 35, 4809–4819.

    Article  PubMed  CAS  Google Scholar 

  14. Yao, Z. Weinberg, Z. and Ruzzo, W. L. (2006). CMfinder – a covariance model based RNA motif finding algorithm. Bioinformatics 22, 445–452.

    Article  PubMed  CAS  Google Scholar 

  15. Yao, Z., Barrick, J., Weinberg, Z., Neph, S., Breaker, R., Tompa, M. and Ruzzo, W.L. (2007). A computational pipeline for high-throughput discovery of cis-regulatory noncoding RNA in prokaryotes. PLoS Comput Biol. 3, e126.

    Article  PubMed  Google Scholar 

  16. Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian, C., Fuellen,G., Gilbert, J. G., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C. J., Osborne, B. I., Pocock, M. R., Schattner, P., Senger, M., Stein, L. D., Stupka, E., Wilkinson, M. D. and Birney, E. (2002). The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 12, 1611–1618.

    Article  PubMed  CAS  Google Scholar 

  17. Griffiths-Jones, S. (2005). RALEE–RNA alignment editor in Emacs. Bioinformatics 21, 257–259.

    Article  PubMed  CAS  Google Scholar 

  18. Pruitt, K. D., Tatusova, T. and Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–504.

    Article  PubMed  CAS  Google Scholar 

  19. Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y., Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Marchler, G. H., Mullokandov, M., Shoemaker, B. A., Simonyan, V., Song, J. S., Thiessen, P. A., Yamashita, R. A., Yin, J. J., Zhang, D. and Bryant, S. H. (2005). CDD: a conserved domain database for protein classification. Nucleic Acids Res. 33, D192–196.

    Article  PubMed  CAS  Google Scholar 

  20. Klein, R. J. and Eddy, S. R. (2003). RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4, 44.

    Article  PubMed  Google Scholar 

  21. Weinberg, Z. and Ruzzo, W. L. (2006). Sequence-based heuristics for faster annotation of non-coding RNA families. Bioinformatics 22, 35–39.

    Article  PubMed  CAS  Google Scholar 

  22. Weinberg, Z. and Ruzzo, W. L. (2004). Faster genome annotation of non-coding RNA families without loss of accuracy, in Proc. Eighth Annu. Int. Conf. on Comp. Mol. Biol. (RECOMB), ACM Press, New York, pp. 243–251.

    Chapter  Google Scholar 

  23. Weinberg, Z. and Ruzzo, W. L. (2004). Exploi-ting conserved structure for faster annotation of non-coding RNAs without loss of accuracy. Bioinformatics 20, i334–i341.

    Article  PubMed  CAS  Google Scholar 

  24. Lescoute, A., Leontis, N. B., Massire, C. and Westhof, E. (2005). Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic Acids Res. 33, 2395–2409.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Zasha Weinberg for helpful comments on this protocol, discussions about filtering techniques, and contributing the script for generating HTML alignments; Chris Fields for his work on the BioPerl modules for parsing Stockholm alignments and interfacing with Infernal; Sean Eddy and colleagues for meticulously documenting and improving Infernal; Alex Bateman and Sam Griffiths-Jones for a generous look at the inner workings of the Rfam database; and especially Ronald Breaker and many other collaborators in his lab for converting bioinformatic fantasies into experimental realities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Barrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barrick, J.E. (2009). Predicting Riboswitch Regulation on a Genomic Scale. In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics