Skip to main content

Analysis of the Functional Role of Toll-Like Receptor-4 Tyrosine Phosphorylation

  • Protocol
Toll-Like Receptors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 517))

Summary

Toll-like receptors (TLRs) are principal innate immune sensors critically involved in the recognition of evolutionary conserved microbial and viral structures called “pathogen-associated molecular patterns” (PAMPs). Although recognition patterns of many TLRs have been characterized, molecular mechanisms that initiate TLR signaling are poorly understood. Since posttranslational modifications of many receptor systems are important in initiating signaling, we studied whether tyrosine phosphorylation of TLR4, the principal sensor of Gram-negative bacterial lipopolysaccharide (LPS) plays a role in TLR4 signal-transducing functions. We found that LPS induced TLR4 tyrosine phosphorylation and mutations of tyrosine residues in the Toll-IL-1R signaling domain markedly suppressed TLR4-mediated activation of JNK and p38 MAP kinases and transcription factors NF-κB, RANTES, and IFN-β. This chapter summarizes a combination of methodological approaches that can be used to demonstrate an indispensable role of TLR4 tyrosine phosphorylation in receptor signaling, including transient transfections, site-directed mutagenesis, immunoprecipitation and immunoblot analyses, and analyses of transcription factor activation in reporter assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pasare, C., and Medzhitov, R. (2005) Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol. 560, 11–18.

    Article  PubMed  CAS  Google Scholar 

  2. Kaisho, T., and Akira, S. (2006) Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 117, 979–987.

    Article  PubMed  CAS  Google Scholar 

  3. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., and Hoffmann, J. A. (1996) The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983.

    Article  PubMed  CAS  Google Scholar 

  4. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A. Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397.

    Article  PubMed  CAS  Google Scholar 

  5. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., and Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  6. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidencefor TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752.

    PubMed  CAS  Google Scholar 

  7. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A., and Bazan, J. F. (1998) A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. U. S. A. 95, 588–593.

    Article  PubMed  CAS  Google Scholar 

  8. Doyle, S. L., and O’Neill, L. A. (2006) Toll-like receptors: from the discovery of NF-κB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 72, 1102–1113.

    Article  PubMed  CAS  Google Scholar 

  9. Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D., and Golenbock, D. T. (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419–33425.

    Article  PubMed  CAS  Google Scholar 

  10. Means, T. K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D. T., and Fenton, M. J. (1999) The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 6748–6755.

    PubMed  CAS  Google Scholar 

  11. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 410, 1099–10103.

    Article  PubMed  CAS  Google Scholar 

  12. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  13. Hochrein, H., Schlatter, B., O’Keeffe, M., Wagner, C., Schmitz, F., Schiemann, M., Bauer, S., Suter, M., and Wagner, H. (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl. Acad. Sci. U. S. A. 101, 11416–11421.

    Article  PubMed  CAS  Google Scholar 

  14. Abe, T., Hemmi, H., Miyamoto, H., Moriishi, K., Tamura, S., Takaku, H., Akira, S., and Matsuura, Y. (2005) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol. 79, 2847–2858.

    Article  PubMed  CAS  Google Scholar 

  15. Bellocchio, S., Montagnoli, C., Bozza, S., Gaziano, R., Rossi, G., Mambula, S. S., Vecchi, A., Mantovani, A., Levits, S. M., and Romani, L. (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059–3069.

    PubMed  CAS  Google Scholar 

  16. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738

    Article  PubMed  CAS  Google Scholar 

  17. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529.

    Article  PubMed  CAS  Google Scholar 

  18. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Iwasaki, A., and Flavell, R. A. (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. U. S. A. 101, 5598–5603.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, D., Zhang, G., Hayden, M. S., Greenblatt, M. B., Bussey, C., Flavell, R. A., and Ghosh, S. (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526.

    Article  PubMed  CAS  Google Scholar 

  20. Yarovinsky, F., Zhang, D., Andersen, J. F., Bannenberg, G. L., Serhan, C. N., Hayden, M. S., Hieny, S., Sutterwala, F. S., Flavell, R. A., Ghosh, S., and Sher, A. (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308, 1626–1629.

    Article  PubMed  CAS  Google Scholar 

  21. Gay, N. J., and Gangloff, M. (2007) Structure and function of toll receptors and their ligands. Annu. Rev. Biochem. 76, 141–165.

    Article  PubMed  CAS  Google Scholar 

  22. Hsueh, R. C., and Scheuermann, R. H. (2000). Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75, 283–316.

    Article  PubMed  CAS  Google Scholar 

  23. Mustelin, T., and Tasken, K. (2003) Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J. 371, 15–27.

    Article  PubMed  CAS  Google Scholar 

  24. Park, J. G., Murray, R. K., Chien, P., Darby, C., and Schreiber, A. D. (1993) Conserved cytoplasmic tyrosine residues of the subunit are required for a phagocytic signal mediated by Fc gamma RIIIA. J. Clin. Invest. 92, 2073–2079.

    Article  PubMed  CAS  Google Scholar 

  25. Arbibe, L., Mira, J. P., Teusch, N., Kline, L., Guha, M., Mackman, N., Godowski, P. J., Ulevitch, R. J., and Knaus, U. G. (2000) Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nat. Immunol. 1, 533–540.

    Article  PubMed  CAS  Google Scholar 

  26. Sarkar, S. N., Peters, K. L., Elco, C. P., Sakamoto, S., Pal, S., and Sen, G. C. (2004) Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat. Struct. Mol. Biol. 11, 1060–1067.

    Article  PubMed  CAS  Google Scholar 

  27. Ivison, S. M., Khan, M. A., Graham, N. R., Bernales, C. Q., Kaleem, A., Tirling, C. O., Cherkasov, A., and Steiner, T. S. (2007) A phosphorylation site in the Toll-like receptor 5 TIR domain is required for inflammatory signalling in response to flagellin. Biochem. Biophys. Res. Commun. 352, 936–941.

    Article  PubMed  CAS  Google Scholar 

  28. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S., and Cao, Z. (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunit. 7, 837–847.

    Article  CAS  Google Scholar 

  29. Medvedev, A. E., Piao, W., Shoenfelt, J., Rhee, S. H., Chen, H., Basu, S., Wahl, L. M., Fenton, M. J., and Vogel, S. N. (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J. Biol. Chem. 282, 16042–53.

    Article  PubMed  CAS  Google Scholar 

  30. Visintin, A., Latz, E., Monks, B. G., Espevik, T., and Golenbock, D. T. (2003) Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J. Biol. Chem. 278, 48313–48320.

    Article  PubMed  CAS  Google Scholar 

  31. Ronni, T., Agarwal, V., Haykinson, M., Haberland, M. E., Cheng, G., and Smale, S. T. (2003) Common interaction surfaces of the toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol. Cell. Biol. 23, 2543–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei E. Medvedev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Medvedev, A.E., Piao, W. (2009). Analysis of the Functional Role of Toll-Like Receptor-4 Tyrosine Phosphorylation. In: McCoy, C.E., O’Neill, L.A.J. (eds) Toll-Like Receptors. Methods in Molecular Biology™, vol 517. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-541-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-541-1_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-72-5

  • Online ISBN: 978-1-59745-541-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics