Skip to main content

Micro RNA Profiling

An Easy and Rapid Method to Screen and Characterize Stem Cell Populations

  • Protocol
Stem Cell Assays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 407))

Summary

MicroRNAs (miRNAs) are small regulatory RNAs varying in length between 20 and 24 nucleotides. They are thought to play a key role during development by negative gene regulation at the post-transcriptional level. Recent studies using quantitative polymerase chain reaction (QPCR) and northern blot analysis have reported the presence of several miRNA unique to specific cell types. The NCode™ multispecies miRNA array provides a means for simultaneously profiling the expression patterns of hundreds of known miRNAs in a given cell type or biological sample. Using this method, miRNA expression patterns in embryonic and adult stem cell lines can be characterized and compared with each other. The accuracy of NCode™ miRNA array data can be further confirmed by QPCR analysis of putative array hits. This array-based screening platform is a fast and easy to use analytical tool that allows one to asses the state of stem cell lines following multiple passages in culture as well as a discovery tool that eliminates the need to screen large numbers of candidate regulatory miRNAs by northern blot or PCR. In this chapter, we describe in detail the method to carry out miRNA array analysis in human embryonal carcinoma cells and confirm the array results using QPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function (2004)) Cell, 116, 281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, R. C., Feinbaum, R. L., and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 (1993) Cell, 75, 843–54.

    Article  CAS  PubMed  Google Scholar 

  3. Wightman, B., Ha, I., and Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans (1993) Cell, 75, 855–62.

    Article  CAS  PubMed  Google Scholar 

  4. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. Identification of novel genes coding for small expressed RNAs (2001) Science, 294, 853–8.

    Article  CAS  PubMed  Google Scholar 

  5. Moss, E. G. MicroRNAs: hidden in the genome (2002) Curr Biol, 12, R138–40.

    Article  CAS  PubMed  Google Scholar 

  6. Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA (2000) Nature, 408, 86–9.

    Article  CAS  PubMed  Google Scholar 

  7. Olsen, P. H., and Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation (1999) Dev Biol, 216, 671–80.

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, B., and Bartel, D. P. MicroRNAs: at the root of plant development? (2003) Plant Physiol, 132, 709–17.

    Article  CAS  PubMed  Google Scholar 

  9. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. The small RNA profile during Drosophila melanogaster development (2003) Dev Cell, 5, 337–50.

    Article  CAS  PubMed  Google Scholar 

  10. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. Identification of tissue-specific microRNAs from mouse (2002) Curr Biol, 12, 735–9.

    Article  CAS  PubMed  Google Scholar 

  11. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., and Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development (2003) RNA, 9, 1274–81.

    Article  CAS  PubMed  Google Scholar 

  12. Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M., and Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity (2003) Dev Biol, 259, 9–18.

    Article  CAS  PubMed  Google Scholar 

  13. Houbaviy, H. B., Murray, M. F., and Sharp, P. A. Embryonic stem cell-specific MicroRNAs (2003) Dev Cell, 5, 351–8.

    Article  CAS  PubMed  Google Scholar 

  14. Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., Lee, J. Y., Cha, K. Y., Chung, H. M., Yoon, H. S., Moon, S. Y., Kim, V. N., and Kim, K. S. Human embryo- nic stem cells express a unique set of microRNAs (2004) Dev Biol, 270, 488–98.

    Article  CAS  PubMed  Google Scholar 

  15. Krichevsky, A. M., Sonntag, K. C., Isacson, O., and Kosik, K. S. Specific microRNAs modulate embryonic stem cell-derived neurogenesis (2006) Stem Cells, 24, 857–64.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation (2004) Science, 303, 83–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., and Wang, D. Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation (2006) Nat Genet, 38, 228–33.

    Article  CAS  PubMed  Google Scholar 

  18. Yi, R., O’Carroll, D., Pasolli, H. A., Zhang, Z., Dietrich, F. S., Tarakhovsky, A., and Fuchs, E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs (2006) Nat Genet, 38, 356–62.

    Article  CAS  PubMed  Google Scholar 

  19. Goff, L. A., Yang, M., Bowers, J., Getts, R. C., Padgett, R. W., and Hart, R. P. Rational probe optimization and enhanced detection strategy for microRNAs using microarrays (2005) RNA Biol, 2, 93–100.

    CAS  PubMed  Google Scholar 

  20. Kerr, M. K., Martin, M., and Churchill, G. A. Analysis of variance for gene expression microarray data (2000) J Comput Biol, 7, 819–37.

    Article  CAS  PubMed  Google Scholar 

  21. Kerr, M. K., and Churchill, G. A. Experimental design for gene expression microarrays (2001) Biostatistics, 2, 183–201.

    Article  PubMed  Google Scholar 

  22. Manly, B. F. J. (1997) Randomization, bootstrap and Monte Carlo Methods in Biology. Second Edition. Chapman and Hall/CRC, Boca Raton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press

About this protocol

Cite this protocol

Lakshmipathy, U., Love, B., Adams, C., Thyagarajan, B., Chesnut, J.D. (2007). Micro RNA Profiling. In: Vemuri, M.C. (eds) Stem Cell Assays. Methods in Molecular Biology™, vol 407. Humana Press. https://doi.org/10.1007/978-1-59745-536-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-536-7_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-744-0

  • Online ISBN: 978-1-59745-536-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics