Skip to main content

Genome-Wide Mapping of Meiotic DNA Double-Strand Breaks in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 557))

Abstract

DNA double-strand breaks (DSBs) initiate meiotic recombination in eukaryotes. We describe two strategies that use microarrays to determine the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) approach that targets the Spo11 protein, which remains covalently attached to DSB ends in certain mutant backgrounds. The second approach involves BND cellulose enrichment of the single-strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11 removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keeney, S. (2001) Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53.

    Article  PubMed  CAS  Google Scholar 

  2. Koehler, K. E., Hawley, R. S., Sherman, S., and Hassold, T. (1996) Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5, 1495–1504.

    PubMed  CAS  Google Scholar 

  3. Myers, S., Bottolo, L., Freeman, C., McVean, G., and Donnelly, P. (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324.

    Article  PubMed  CAS  Google Scholar 

  4. Drouaud, J., Camilleri, C., Bourguignon, P. Y., Canaguier, A., Berard, A., Vezon, D., Giancola, S., Brunel, D., Colot, V., Prum, B., Quesneville, H., and Mezard, C. (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res. 16, 106–114.

    Article  PubMed  CAS  Google Scholar 

  5. Winzeler, E. A., Richards, D. R., Conway, A. R., Goldstein, A. L., Kalman, S., McCullough, M. J., McCusker, J. H., Stevens, D. A., Wodicka, L., Lockhart, D. J., and Davis, R. W. (1998) Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197.

    Article  PubMed  CAS  Google Scholar 

  6. Gerton, J. L., DeRisi, J., Shroff, R., Lichten, M., Brown, P. O., and Petes, T. D. (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 97, 11383–11390.

    Article  PubMed  CAS  Google Scholar 

  7. Nairz, K. and Klein, F. (1997) mre11S--a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11, 2272–2290.

    Article  PubMed  CAS  Google Scholar 

  8. Prinz, S., Amon, A., and Klein, F. (1997) Isolation of COM1, a new gene required to complete meiotic double- strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146, 781–795.

    PubMed  CAS  Google Scholar 

  9. Alani, E., Padmore, R., and Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436.

    Article  PubMed  CAS  Google Scholar 

  10. Keeney, S., Giroux, C. N., and Kleckner, N. (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384.

    Article  PubMed  CAS  Google Scholar 

  11. Prieler, S., Penkner, A., Borde, V., and Klein, F. (2005) The control of Spo11’s interaction with meiotic recombination hotspots. Genes Dev. 19, 255–269.

    Article  PubMed  CAS  Google Scholar 

  12. Robine, N., Uematsu, N., Amiot, F., Gidrol, X., Barillot, E., Nicolas, A., and Borde, V. (2007) Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 1868–1880.

    Article  PubMed  CAS  Google Scholar 

  13. Cromie, G., Hyppa, R. W., Cam, H., Farah, J. A., Grewal, S., and Smith, G. R. (2007) A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet. 3, e141.

    Article  PubMed  Google Scholar 

  14. Neale, M. J., Pan, J., and Keeney, S. (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  15. Shinohara, A. and Shinohara, M. (2004) Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet. Genome Res. 107, 201–207.

    Article  PubMed  CAS  Google Scholar 

  16. Blitzblau, H. G., Bell, G. W., Rodriguez, J., Bell, S. P., and Hochwagen, A. (2007) Mapping of meiotic single-stranded DNA reveals double-strand break hotspots near telomeres and centromeres. Curr. Biol. 17, 2003–2012.

    Article  PubMed  CAS  Google Scholar 

  17. Buhler, C., Borde, V., and Lichten, M. (2007) Mapping meiotic ssDNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol. 5, e324.

    Article  PubMed  Google Scholar 

  18. Borde, V., Wu, T. C., and Lichten, M. (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4832–4842.

    PubMed  CAS  Google Scholar 

  19. Baudat, F. and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. U. S. A. 94, 5213–5218.

    Article  PubMed  CAS  Google Scholar 

  20. Strahl-Bolsinger, S., Hecht, A., Luo, K., and Grunstein, M. (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93.

    Article  PubMed  CAS  Google Scholar 

  21. Kee, K. and Keeney, S. (2002) Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 160, 111–122.

    PubMed  CAS  Google Scholar 

  22. Gamper, H., Piette, J., and Hearst, J. E. (1984) Efficient formation of a crosslinkable HMT monoadduct at the Kpn I recognition site. Photochem. Photobiol. 40, 29–34.

    Article  PubMed  CAS  Google Scholar 

  23. Borde, V., Lin, W., Novikov, E., Petrini, J. H., Lichten, M., and Nicolas, A. (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol. Cell 13, 389–401.

    Article  PubMed  CAS  Google Scholar 

  24. Buck, M. J. and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, J., Wu, T. C., and Lichten, M. (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14, 4599–4608.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Gerton, Hugh Cam and Shiv Grewal for technical advice, Dhruba Chattoraj and Yikang Rong for advice regarding the manuscript, and David Kaback and Jennifer Fung for communicating data in advance of publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Buhler, C., Shroff, R., Lichten, M. (2009). Genome-Wide Mapping of Meiotic DNA Double-Strand Breaks in Saccharomyces cerevisiae . In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 557. Humana Press. https://doi.org/10.1007/978-1-59745-527-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-527-5_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-66-4

  • Online ISBN: 978-1-59745-527-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics