Skip to main content

Helios® Gene Gun–Mediated Transfection of the Inner Ear Sensory Epithelium

  • Protocol
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Helios® Gene Gun–mediated transfection is a biolistic method for mechanical delivery of exogenous DNA into cells in vitro or in vivo. The technique is based on bombardment of a targeted cellular surface by micron- or submicron-sized DNA-coated gold particles that are accelerated by a pressure pulse of compressed helium gas. The main advantage of Helios® Gene Gun–mediated transfections is that it functions well on various cell types, including terminally differentiated cells that are difficult to transfect, such as neurons or inner ear sensory hair cells, and cells in internal cellular layers, such as neurons in organotypic brain slices. The successful delivery of mRNA, siRNA, or DNA of practically any size can be achieved using biolistic transfection. This chapter provides a detailed description and critical evaluation of the methodology used to transfect cDNA expression constructs, including green fluorescent protein (GFP) tagged full-length cDNAs of myosin XVa, whirlin, and β-actin, into cultured inner ear sensory epithelia using the Bio-Rad Helios® Gene Gun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell, I. J., Richardson, G. P., and Cody, A. R. (1986) Mechanosensitivity of mammalian auditory hair cells in vitro. Nature 321, 517–519.

    Article  CAS  PubMed  Google Scholar 

  2. Russell, I. J. and Richardson, G. P. (1987) The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear. Res. 31, 9–24.

    Article  CAS  PubMed  Google Scholar 

  3. Schneider, M. E., Belyantseva, I. A., Azevedo, R. B., and Kachar, B. (2002) Rapid renewal of auditory hair bundles. Nature 418, 837–838.

    Article  CAS  PubMed  Google Scholar 

  4. Belyantseva, I. A., Boger, E. T., and Friedman, T. B. (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc. Natl Acad. Sci. USA 100, 13958–13963.

    Article  CAS  PubMed  Google Scholar 

  5. Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P., and Kachar, B. (2004) An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897.

    Article  CAS  PubMed  Google Scholar 

  6. Belyantseva, I. A., Boger, E. T., Naz, S., Frolenkov, G. I., Sellers, J. R., Ahmed, Z. M., et al. (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell Biol. 7, 148–156.

    Article  CAS  PubMed  Google Scholar 

  7. Boger, E. T., Frolenkov, G. I., Friedman, T. B., and Belyantseva, I. A. (2008) Myosin XVa, in Myosins: A Superfamily of Molecular Motors (Coluccio, L. M., ed.), Springer, The Netherlands, pp. 441–467.

    Google Scholar 

  8. Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7417.

    Article  CAS  PubMed  Google Scholar 

  9. Parker Ponder, K. (2001) Vectors of gene therapy, in An Introduction to Molecular Medicine and Gene Therapy (Kresina, T. F., ed.), A John Wiley and Sons, Inc., New York, pp. 77–112.

    Google Scholar 

  10. Stone, I. M., Lurie, D. I., Kelley, M. W., and Poulsen, D. J. (2005) Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea. Mol. Ther. 11, 843–848.

    Article  CAS  PubMed  Google Scholar 

  11. Di Pasquale, G., Rzadzinska, A., Schneider, M. E., Bossis, I., Chiorini, J. A., and Kachar, B. (2005) A novel bovine virus efficiently transduces inner ear neuroepithelial cells. Mol. Ther. 11, 849–855.

    Article  CAS  PubMed  Google Scholar 

  12. Bhattarai, S. R., Kim, S. Y., Jang, K. Y., Lee, K. C., Yi, H. K., Lee, D. Y., et al. (2008) Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line. J. Virol. Methods. 147, 213–218.

    Article  CAS  PubMed  Google Scholar 

  13. Favard, C., Dean, D. S., and Rols, M. P. (2007) Electrotransfer as a non viral method of gene delivery. Curr. Gene Ther. 7, 67–77.

    Article  CAS  PubMed  Google Scholar 

  14. Saito, T. and Nakatsuji, N. (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246.

    Article  CAS  PubMed  Google Scholar 

  15. Jones, J. M., Montcouquiol, M., Dabdoub, A., Woods, C., and Kelley, M. W. (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J. Neurosci. 26, 550–558.

    Article  CAS  PubMed  Google Scholar 

  16. Weaver, J. C. (1995) Electroporation theory: concepts and mechanisms. Methods Mol. Biol. 47, 1–26.

    CAS  PubMed  Google Scholar 

  17. Atkins, R. L., Wang, D., and Burke, R. D. (2000) Localized electroporation: a method for targeting expression of genes in avian embryos. Biotechniques 28, 94–96, 98, 100.

    CAS  PubMed  Google Scholar 

  18. Seiler, M. P., Gottschalk, S., Cerullo, V., Ratnayake, M., Mane, V. P., Clarke, C., et al. (2007) Dendritic cell function after gene transfer with adenovirus-calcium phosphate co-precipitates. Mol. Ther. 15, 386–392.

    Article  CAS  PubMed  Google Scholar 

  19. Scherer, F., Anton, M., Schillinger, U., Henke, J., Bergemann, C., Krüger, A., et al. (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9, 102–109.

    Article  CAS  PubMed  Google Scholar 

  20. Mykhaylyk, O., Antequera, Y. S., Vlaskou, D., and Plank, C. (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2, 2391–2411.

    Article  CAS  PubMed  Google Scholar 

  21. Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Rémy, J. S., Krötz, F., et al. (2003) The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, W., Liu, X., Gelinas, D., Ciruna, B., and Sun, Y. (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS ONE 2, e862.

    Article  PubMed  Google Scholar 

  23. Tirlapur, U. K. and König, K. (2002) Targeted transfection by femtosecond laser. Nature 418, 290–291.

    Article  CAS  PubMed  Google Scholar 

  24. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73.

    Article  CAS  Google Scholar 

  25. Klein, T. M., Fromm, M., Weissinger, A., Tomes, D., Schaaf, S., Sletten, M., et al. (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Natl. Acad. Sci. USA 85, 4305–4309.

    Article  CAS  PubMed  Google Scholar 

  26. Zelenin, A. V., Titomirov, A. V., and Kolesnikov, V. A. (1989) Genetic transformation of mouse cultured cells with the help of high-velocity mechanical DNA injection. FEBS Lett. 244, 65–67.

    Article  CAS  PubMed  Google Scholar 

  27. Johnston, S. A. (1990) Biolistic transformation: microbes to mice. Nature 346, 776–777.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, N. S., Burkholder, J., Roberts, B., Martinell, B., and McCabe, D. (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl Acad. Sci. USA 87, 9568–9572.

    Article  CAS  PubMed  Google Scholar 

  29. Williams, R. S., Johnston, S. A., Riedy, M., DeVit, M. J., McElligott, S. G., and Sanford, J. C. (1991) Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc. Natl. Acad. Sci. USA 88, 2726–2730.

    Article  CAS  PubMed  Google Scholar 

  30. Sanford, J. C., Smith, F. D., and Russell, J. A. (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217, 483–509.

    Article  CAS  PubMed  Google Scholar 

  31. O’Brien, J. A. and Lummis, S. C. (2002) An improved method of preparing microcarriers for biolistic transfection. Brain Res. Protoc. 10, 12–15.

    Google Scholar 

  32. Thomas, J. L., Bardou, J., L’hoste, S., Mauchamp, B., and Chavancy, G. (2001) A helium burst biolistic device adapted to penetrate fragile insect tissues. J. Insect Sci. 1, 9.

    CAS  PubMed  Google Scholar 

  33. Kim, T. W., Lee, J. H., He, L., Boyd, D. A., Hardwick, J. M., Hung, C. F., et al. (2005) Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res. 65, 309–316.

    CAS  PubMed  Google Scholar 

  34. Pascolo, S. (2006) Vaccination with messenger RNA. Methods Mol. Med. 127, 23–40. [Review].

    CAS  PubMed  Google Scholar 

  35. Yang, C. H., Shen, S. C., Lee, J. C., Wu, P. C., Hsueh, S. F., Lu, C. Y., et al. (2004) Seeing the gene therapy: application of gene gun technique to transfect and decolour pigmented rat skin with human agouti signalling protein cDNA. Gene Ther. 11, 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  36. Shefi, O., Simonnet, C., Baker, M. W., Glass, J. R., Macagno, E. R., and Groisman, A. (2006) Microtargeted gene silencing and ectopic expression in live embryos using biolistic delivery with a pneumatic capillary gun. J. Neurosci. 26, 6119–6123.

    Article  CAS  PubMed  Google Scholar 

  37. O’Brien, J. A. and Lummis, S. C. (2006) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat. Protoc. 1, 977–981.

    Article  PubMed  Google Scholar 

  38. Russell, J. A., Roy, M. K., and Sanford, J. C. (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98, 1050–1056.

    Article  CAS  PubMed  Google Scholar 

  39. Delprat, B., Michel, V., Goodyear, R., Yamasaki, Y., Michalski, N., El-Amraoui, A., et al. (2005) Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum. Mol. Genet. 14, 401–410.

    Article  CAS  PubMed  Google Scholar 

  40. Probst, F. J., Fridell, R. A., Raphael, Y., Saunders, T. L., Wang, A., Liang, Y., et al. (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–1447.

    Article  CAS  PubMed  Google Scholar 

  41. Holme, R. H., Kiernan, B. W., Brown, S. D., and Steel, K. P. (2002) Elongation of hair cell stereocilia is defective in the mouse mutant whirler. J. Comp. Neurol. 450, 94–102.

    Article  PubMed  Google Scholar 

  42. Mburu, P.,Mustapha, M., Varela, A.,Weil, D., El-Amraoui, A., Holme, R. H., et al. (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nature Genet. 34, 421–428.

    Google Scholar 

Download references

Acknowledgments

I thank Thomas Friedman for support and encouragement as well as for critical reading of this chapter, Jonathan Gale (University of London, UK) from whom I learned the organ of Corti explant technique, Erich Boger for preparing myosin XVa and whirlin cDNA expression constructs, critical reading of the chapter and helpful discussions, Andrew Griffith, Valentina Labay, Polina Belyantseva and Shin-Ichiro Kitajiri for critical reading of the manuscript. Supported by funds from the NIDCD Intramural Program (1 Z01 DC 00035-11) to Thomas B. Friedman.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Belyantseva, I.A. (2009). Helios® Gene Gun–Mediated Transfection of the Inner Ear Sensory Epithelium. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics