Skip to main content

Genetic Fate-Mapping Approaches: New Means to Explore the Embryonic Origins of the Cochlear Nucleus

  • Protocol
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 493))

Greatly impacting the field of neural development are new technologies for generating fate maps in mice and thus for illuminating relationships between embryonic and adult brain structures. Until now, efforts in mammalian models such as the mouse have presented challenges because their in utero development limits the access needed for traditional methods involving tracer injection or cell transplantation. But access is no longer an obstacle. It is now possible to deliver cell lineage tracers via noninvasive genetic, rather than physical, means. The hinge-pin of these new “genetic fate mapping” technologies is a class of molecule called a site-specific recombinase. The most commonly used being Cre and Flp. Through the capacity to produce precise DNA excisions, Cre or Flp can act as an on-switch, capable of transforming a silenced reporter transgene, for example, into a constitutively expressed one. A reporter transgene is, in effect, transformed by the excision event into an indelible cell-lineage tracer, marking ancestor and descendant cells. The actual cell population to be fate mapped is determined by recombinase parameters. Being genetically encoded, Cre or Flp is “delivered” to specific cells in the embryo using transgenics – promoter and enhancer elements from a gene whose expression is restricted to the desired cell type is used to drive recombinase expression. Thus, recombinase delivery is not only noninvasive but also restricted to specific embryonic cells based on their gene expression phenotype, lending molecular precision to the selection of cells for fate mapping. Resolution in cell type selection has recently been improved further by making lineage tracer activation dependent on two DNA excision events rather than just one. Here, in what is referred to as “intersectional genetic fate mapping,” lineage tracer is expressed only in those cells having undergone a Flp-dependent excision as well as a Cre-dependent excision, thus marking the embryonic cells lying at the intersection of two gene (Flp and Cre driver) expression domains. The field of hindbrain development, in particular, has seen great advances through application of these new approaches. For example, genetic fate maps of the cochlear nucleus have yielded surprising information about where in the embryonic hindbrain its constituent neurons arise and journey and what genes are expressed along the way. In this chapter, we detail materials and methods relevant to genetic fate mapping in general and intersectional genetic fate mapping in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cepko, C. L., Austin, C. P., Walsh, C., Ryder, E. F., Halliday, A., and Fields- Berry, S. (1990) Studies of cortical development using retrovirus vectors. Cold Spring Harb. Symp. Quant. Biol. 55, 265–278.

    Google Scholar 

  2. Galileo, D. S., Gray, G. E., Owens, G. C., Majors, J., and Sanes, J. R. (1990) Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc. Natl. Acad. Sci. USA 87, 458–462.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh, C. and Cepko, C. L. (1988) Clonally related cortical cells show several migration patterns. Science 241, 1342–1345.

    Article  CAS  PubMed  Google Scholar 

  4. Wetts, R. F. and Fraser, S. E. (1988) Multipotent precursors can give rise to all major cell types of the frog retina. Science 239, 1142–1145.

    Article  CAS  PubMed  Google Scholar 

  5. Keller, R. E. (1975) Vital dye mapping of the gastrula and neuraula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42, 222–241.

    Article  CAS  PubMed  Google Scholar 

  6. Le Douarin, N. (1982) The Neural Crest, Cambridge University Press, Cambridge.

    Google Scholar 

  7. Branda, C. and Dymecki, S. M. (2004) Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Develop. Cell 6, 7–28.

    Article  CAS  Google Scholar 

  8. Joyner, A. and Zervas, M. (2006) Genetic inducible fate mapping in mouse: Establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev. Dynamics 235, 2376–2385.

    Article  Google Scholar 

  9. Dymecki, S. M. and Kim, J. C. (2007) Molecular neuroanatomy’s “Three Gs”: A Primer. Neuron 54, 17–34.

    Article  CAS  PubMed  Google Scholar 

  10. Dymecki, S. M. and Tomasiewicz, H. (1998) Using Flp-recombinase to characterize expansion of Wnt1-expressing neural progenitors in the mouse. Dev. Biol. 201, 57–65.

    Article  CAS  PubMed  Google Scholar 

  11. Zinyk, D., Mercer, E. H., Harris, E., Anderson, D. J., and Joyner, A. L. (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez, C. I. and Dymecki, S. M. (2000) Origin of the precerebellar system. Neuron 27, 475–486.

    Article  CAS  PubMed  Google Scholar 

  13. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J. J., and Dymecki, S. M. (2003) Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75.

    Article  CAS  PubMed  Google Scholar 

  14. Farago, A., Awatramani, R., and Dymecki, S. (2006) Assembly of the brainstem cochlear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50,205–218.

    Article  CAS  PubMed  Google Scholar 

  15. Jensen, P., Farago, A. F., Awatramani, R. B., Scott, M. M., Deneris, E. S., Dymecki, S. M. (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci. April; 11(4), 417–419.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, V. Y., Rose, M. F., and Zoghbi, H. Y. (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48, 31–43.

    Article  CAS  PubMed  Google Scholar 

  17. Landsberg, R. L., Awatramani, R. B., Hunter, N. L., Farago, A. F., DiPietrantonio, H. J., Rodriguez, C. I., and Dymecki, S. M. (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48, 933–947.

    Article  CAS  PubMed  Google Scholar 

  18. Stark, W. M., Boocock, M. R., and Sherratt, D. J. (1992) Catalysis by site-specific recombinases. Trends Genet. 8, 432–439.

    Article  CAS  PubMed  Google Scholar 

  19. Dymecki, S. M. (2000) Site-specific recombination in cells and mice, in Gene Targeting: A Practical Approach (Joyner, A. L., ed.) second ed., Oxford University Press, Oxford,pp. 37–99.

    Google Scholar 

  20. Lumsden, A. and Krumlauf, R. (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115.

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez, C. I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A. F., and Dymecki, S. M. (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140.

    Article  CAS  PubMed  Google Scholar 

  22. Kosman, D., Mizutani, C. M., Lemons, D., Cox, W. G., McGinnis, W., and Bier, E. (2004) Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846.

    Article  CAS  PubMed  Google Scholar 

  23. Tsien, J. Z., Chen, D. F., Gerber, D., Tom, C., Mercer, E. H., Anderson, D. J., Mayford, M., Kandel, E. R., and Tonegawa, S. (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, J.C., Dymecki, S.M. (2009). Genetic Fate-Mapping Approaches: New Means to Explore the Embryonic Origins of the Cochlear Nucleus. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics