Skip to main content

Simulator for Neural Networks and Action Potentials

Description and Applications

  • Protocol
Neuroinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 401))

Summary

A key challenge for neuroinformatics is to devise methods for representing, accessing, and integrating vast amounts of diverse and complex data. A useful approach to represent and integrate complex data sets is to develop mathematical models [Arbib (The Handbook of Brain Theory and Neural Networks, pp. 741–745, 2003); Arbib and Grethe (Computing the Brain: A Guide to Neuroinformatics, 2001); Ascoli (Computational Neuroanatomy: Principles and Methods, 2002); Bower and Bolouri (Computational Modeling of Genetic and Biochemical Networks, 2001); Hines et al. (J. Comput. Neurosci. 17, 7–11, 2004); Shepherd et al. (Trends Neurosci. 21, 460–468, 1998); Sivakumaran et al. (Bioinformatics 19, 408–415, 2003); Smolen et al. (Neuron 26, 567–580, 2000); Vadigepalli et al. (OMICS 7, 235–252, 2003)]. Models of neural systems provide quantitative and modifiable frameworks for representing data and analyzing neural function. These models can be developed and solved using neurosimulators. One such neurosimulator is simulator for neural networks and action potentials (SNNAP) [Ziv (J. Neurophysiol. 71, 294–308, 1994)]. SNNAP is a versatile and user-friendly tool for developing and simulating models of neurons and neural networks. SNNAP simulates many features of neuronal function, including ionic currents and their modulation by intracellular ions and/or second messengers, and synaptic transmission and synaptic plasticity. SNNAP is written in Java and runs on most computers. Moreover, SNNAP provides a graphical user interface (GUI) and does not require programming skills. This chapter describes several capabilities of SNNAP and illustrates methods for simulating neurons and neural networks. SNNAP is available at http://snnap.uth.tmc.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bower, J. M. and Beeman, D. (eds) (1998) The Book of Genesis: Exploring Realistic Neural Models with the GEneral NEural SImulation Sytem, Second Edition. Springer-Verlag, New York, NY.

    Google Scholar 

  • Bower, J. M., Beemand, D., and Hucka, M. (2003) GENESIS simulation system, in The Handbook of Brain Theory and Neural Networks (Arbib, M. A., ed.). The MIT Press, Cambridge, MA, pp. 475–478.

    Google Scholar 

  • Hines, M. L. and Carnevale, N. T. (1997) The NEURON simulation environment. Neural Comput. 15, 1179–1209.

    Article  Google Scholar 

  • Hines, M. L. and Carnevale, N. T. (2001) NEURON: a tool for neuroscientists. Neuroscientist 7, 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Carnevale, N. T. and Hines, M. L. (2005) The NEURON Book. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hayes, R. D., Byrne, J. H., and Baxter, D. A. (2003) Neurosimulation: tools and resources, in The Handbook of Brain Theory and Neural Networks, Second Edition (Arbib, M. A., ed.). MIT Press, Cambridge, MA, pp. 776–780.

    Google Scholar 

  • Kroupina, O. and Rojas, R. (2004) A Survey of Compartmental Modeling Packages. Free University of Berlin, Institute of Computer Science, Technical Report B-04-08. Available at http://www.inf.fu-berlin.de/inst/ag-ki/ger/b-04-08.pdf.

  • Ziv, I, Baxter, D. A., and Byrne, J. H. (1994) Simulator for neural networks and action potentials: description and application. J. Neurophysiol. 71, 294–308.

    CAS  PubMed  Google Scholar 

  • Hayes, R. D., Byrne, J. H., Cox, S. J., and Baxter D. A. (2005) Estimation of single-neuron model parameters from spike train data. Neurocomputing 65-66C, 517–529.

    Article  Google Scholar 

  • Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M. (2004) ModelDB: a database to support computational neuroscience. J. Comput. Neurosci. 17, 7–11.

    Article  PubMed  Google Scholar 

  • Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M., and Hines, M. L. (2003) ModelDB: making models publicly accessible to support computational neuroscience. Neuroinformatics 1, 135–139.

    Article  PubMed  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.

    CAS  Google Scholar 

  • Byrne, J. H. (1980) Analysis of ionic conductance mechanisms in motor cells mediating inking behavior in Aplysia californica. J. Neurophysiol. 43, 630–650.

    CAS  PubMed  Google Scholar 

  • Byrne, J. H. (1980) Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behavior in Aplysia californica. J. Neurophysiol. 43, 651–668.

    CAS  PubMed  Google Scholar 

  • Mascagni, M. V. (1989) Numerical methods for neuronal modeling, in Methods in Neuronal Modeling (Koch, C. and Segev, I., eds). MIT Press, Cambridge, MA, pp. 439–486.

    Google Scholar 

  • Luscher, H.-R. and Shiner, J. S. (1990) Computation of action potential propagation and presynaptic bouton activation in terminal arborizations of different geometries. Biophys. J. 58, 1377–1388.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, D. A., Canavier, C. C., and Byrne, J. H. (2004) Dynamical properties of excitable membranes, in From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Byrne, J. H. and Roberts, J., eds). Academic Press, San Diego, CA, pp. 161–196.

    Google Scholar 

  • McCormick, D. A. (2004) Membrane potential and action potential, in From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Byrne, J. H. and Roberts, J., eds). Academic Press, San Diego, CA, pp. 115–140.

    Google Scholar 

  • Butera, R. J., Clark, J. W., Canavier, C. C., Baxter, D. A., and Byrne, J. H. (1995) Analysis of the effects of modulatory agents on a modeled bursting neuron: dynamic interactions between voltage and calcium dependent systems. J. Comput. Neurosci. 2, 19–44.

    Article  PubMed  Google Scholar 

  • Yu, X., Byrne, J. H., and Baxter, D. A. (2005) Modeling interactions between electrical activity and second-messenger cascades in Aplysia neuron R15. J. Neurophysiol. 91, 2297–2311.

    Article  Google Scholar 

  • Cropper, E. C., Evans, C. G., Hurwitz, I., Jing, J., Proekt, A, Romero, A., and Rosen, S. C. (2004) Feeding neural networks in the mollusc Aplysia. Neurosignals 13, 70–86.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, C. J. and Susswein, A. J. (2002) Comparative neuroethology of feeding control in molluscs. J. Exp. Biol. 205, 877–896.

    CAS  PubMed  Google Scholar 

  • Baxter, D. A., Canavier, C. C., Clark, J. W., and Byrne, J. H. (1999) Computational model of the serotonergic modulation of sensory neurons in Aplysia. J. Neurophysiol. 82, 2914–2935.

    CAS  PubMed  Google Scholar 

  • Komendantov, A. O. and Kononenki, N. I. (2000) Caffeine-induced oscillations of the membrane potential in Aplysia neurons. Neurophysiology 32, 77–84.

    Article  Google Scholar 

  • Pelz, C., Jander, J., Rosenboom, H., Hammer, M., and Menzel, R. (1999) IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. J. Neurophysiol. 81, 1749–1759.

    CAS  PubMed  Google Scholar 

  • Steffen, M. A., Seay, C. A., Amini, B., Cai, Y., Feigenspan, A., Baxter, D. A., and Marshak, D. W. (2003) Spontaneous activity of dopaminergic retinal neurons. Biophys. J. 85, 2158–2169.

    Article  CAS  PubMed  Google Scholar 

  • Wustenberg, D. G., Boytcheva, M., Grunewald, B., Byrne, J. H., Menzel, R., and Baxter, D. A. (2004) Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J. Neurophysiol. 92, 2589–2603.

    Article  PubMed  Google Scholar 

  • Xiao, J., Cai, Y., Yen, J. Steffen, M., Baxter, D. A., Feigenspan, A., and Marshak, D. (2004) Voltage clamp analysis and computational model of dopaminergic neurons from mouse retina. Vis. Neurosci. 21, 835–849.

    Article  PubMed  Google Scholar 

  • Byrne, J. H. (2004) Postsynaptic potentials and synaptic integration, in From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Byrne, J. H. and Roberts, J., eds). Academic Press, San Diego, CA, pp. 459–478.

    Google Scholar 

  • Jack, J. J. B. and Redman, S. J. (1971) The propagation of transient potentials in some linear cable structures. J. Physiol. (Lond.) 215, 283–320.

    CAS  Google Scholar 

  • Rall, W. (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Neurophysiol. 30, 1138–1168.

    CAS  PubMed  Google Scholar 

  • Wilson, M. A. and Bower, J. M. (1989) The simulation of large-scale neural networks, in Methods in Neuronal Modeling (Koch, C. and Segev, I., eds). The MIT Press, Cambridge, MA, pp. 291–334.

    Google Scholar 

  • Rall, W. and Agmon-Snir, H. (1998) Cable theory for dendritic neurons, in Methods in Neuronal Modeling, Second Edition (Koch, C. and Segev, I., eds). MIT Press, Cambridge, MA, pp. 27–92.

    Google Scholar 

  • Phares, G. A., Antzoulatos, E. G., Baxter, D. A., and Byrne, J. H. (2003) Burst-induced synaptic depression and its modulation contribute to information transfer at Aplysia sensorimotor synapses: empirical and computational analyses. J. Neurosci. 23, 8392–8401.

    CAS  PubMed  Google Scholar 

  • White, J. A., Ziv, I., Cleary, L. J., Baxter, D. A., and Byrne, J. H. (1993) The role of interneurons in controlling the tail-withdrawal reflex in Aplysia: a network model. J. Neurophysiol. 70, 1777–1786.

    CAS  PubMed  Google Scholar 

  • Epstein, I. R. and Marder, E. (1990) Multiple modes of a conditional neural oscillator. Biol. Cybern. 63, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Gingrich, K. J. and Byrne, J. H. (1985) Simulation of synaptic depression, posttetanic potentiation and presynaptic facilitation of synaptic potentials from sensory neurons mediating gill-withdrawal reflexes in Aplysia. J. Neurophysiol. 53, 652–669.

    CAS  PubMed  Google Scholar 

  • Huang, R. C. and Gillette, R. (1993) Co-regulation of cAMP-activated Na+ current by Ca2+ in neurones of the mollusc Pleurobranchaea. J. Physiol. (Lond.) 462, 307–320.

    CAS  Google Scholar 

  • Cataldo, E., Brunelli, M., Byrne, J. H., Av-Ron, E., Cai, Y., and Baxter, D. A. (2005) Computational model of touch mechanoafferent (T cell) of the leech: role of afterhyperpolarization (AHP) in activity-dependent conduction failure. J. Comput. Neurosci. 18, 5–24.

    Article  PubMed  Google Scholar 

  • Lombardo, P., Scuri, R., Cataldo, E., Calvani, M., Nicolai, R., Mosconi, L., and Brunelli, M. (2004) Acetyl-L-carnitine induces a sustained potentiation of the afterhyperpolarization. Neuroscience 128, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Backwell, K. T. (2005) A new era in computational neuroscience. Neuroinformatics 3, 163–166.

    Article  Google Scholar 

  • Segev, I. and Rall, W. (1998) Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21, 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Segev, I. and Schneidman, E. (1999) Axons as computing devices: basic insights gained from models. J. Physiol. (Paris) 93, 263–270.

    Article  CAS  Google Scholar 

  • Shepherd, G. M. (2004) Electrotonic properties of axons and dendrites, in From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Byrne, J. H. and Roberts, J., eds). Academic Press, San Diego, CA, pp. 91–113.

    Google Scholar 

  • Shepherd, G. M. (2004) Information processing in complex dendrites, in From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience (Byrne, J. H. and Roberts, J., eds). Academic Press, San Diego, CA, pp. 479–497.

    Google Scholar 

  • Cai, Y, Baxter, D. A., and Crow, T. (2003) Computational study of enhanced excitability in Hermissenda: membrane conductances modulated by 5-HT. J. Comput. Neurosci. 15, 105–121.

    Article  PubMed  Google Scholar 

  • Flynn, M., Cai, Y., Baxter, D. A., and Crow, T. (2003) A computational study of the role of spike broadening in synaptic facilitation of Hermissenda. J. Comput. Neurosci. 15, 29–41.

    Article  PubMed  Google Scholar 

  • Moss, B. L., Fuller, A. D., Sahley, C. L., and Burrell, B. D. (2005) Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech. J. Neurophysiol. 94, 2575–2589.

    Article  CAS  PubMed  Google Scholar 

  • Susswein, A. J., Hurwitz, I., Thorne, R., Byrne, J. H., and Baxter, D. A. (2002) Mechanisms underlying fictive feeding in Aplysia: coupling between a large neuron with plateau potentials and a spiking neuron. J. Neurophysiol. 87, 2307–2323.

    PubMed  Google Scholar 

  • Kabotyanski, E. A., Ziv, I., Baxter, D. A., and Byrne, J. H. (1994) Experimental and computational analyses of a central pattern generator underlying aspects of feeding behavior in Aplysia. Neth. J. Zool. 44, 357–373.

    Article  Google Scholar 

  • Guttman, R., Lewis, S., and Rinzel, J. (1980) Control of repetitive firing in squid membrane as a model for a neuroneoscillator. J. Physiol. (Lond.) 305, 377–395.

    CAS  Google Scholar 

  • Arbib, M. A., ed.. The MIT Press, Cambridge, MA, pp. 741–745.

    Google Scholar 

  • Arbib, M. A. and Grethe, J. S. (eds) (2001) Computing the Brain: A Guide to Neuroinformatics. Academic Press, San Diego, CA.

    Google Scholar 

  • Shepherd, G. M., Mirsky, J. S., Healy, M. D., Singer, M. S., Skoufos, E., Hines, M. S., Nadkarni, P. M., and Miller, P. L. (1998) The human brain project: neuroinformatics tools for integrating, searching, and modeling multidisciplinary neuroscience data. Trends Neurosci. 21, 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Kotter, R. (2001) Neuroscience databases: tools for exploring brain structure-function relationships. Philos. Trans. R. Soc. Lond. B. 356, 1111–1120.

    Article  CAS  Google Scholar 

  • Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J. T., Brinkley, J. F., Dale, A. M., Fox, P. T., Gardner, E. R., George, J. S., Goddard, N., Harris, K. M., Herskovits, E. H., Hines, M. L., Jacobs, G. A., Jacobs, R. E., Jones, E. G., Kennedy, D. N., Kimberg, D. Y., Mazziotta, J. C., Miller, P. L., Mori, S., Mountain, D. C., Reiss, A. L., Rosen, G. D., Rottenberg, D. A., Shepherd, G. M., Smalheiser, N. R., Smith, K. P., Strachan, T., Van Essen, D. C., Williams, R. W., and Wong, S. T. (2003) Towards effective and rewarding data sharing. Neuroinformatics 1, 289–295.

    Article  PubMed  Google Scholar 

  • Finney, A. and Hucka, M. (2003) Systems biology markup language: level 2 and beyond. Biochem. Soc. Trans. 31, 1472–1473.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, B. E., Hucka, M., Finney, A., and Doyle, J. (2004) MathSBML: a package for manipulating SBML-based biological models. Bioinformatics 20, 2829–2831.

    Article  CAS  PubMed  Google Scholar 

  • Webb, K. and White, T. (2005) UML as a cell and biochemistry modeling language. Biosystems 80, 283–302.

    Article  CAS  PubMed  Google Scholar 

  • Weitzenfeld, A. (2003) NSL neural simulation language, in The Handbook of Brain Theory and Neural Networks (Arbib, M. A., ed.). The MIT Press, Cambridge, MA, pp. 784–788.

    Google Scholar 

Download references

Acknowledgments

We thank Drs. E. Av-Ron and G. Phares for helpful comments on an earlier draft of this manuscript. This work was supported by NIH grants R01RR11626 and P01NS38310.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Baxter, D.A., Byrne, J.H. (2007). Simulator for Neural Networks and Action Potentials. In: Neuroinformatics. Methods in Molecular Biology™, vol 401. Humana Press. https://doi.org/10.1007/978-1-59745-520-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-520-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-720-4

  • Online ISBN: 978-1-59745-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics