Skip to main content

Modeling 2D and 3D Diffusion

  • Protocol
Methods in Membrane Lipids

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 400))

Abstract

Modeling obstructed diffusion is essential to the understanding of diffusion-mediated processes in the crowded cellular environment. Simple Monte Carlo techniques for modeling obstructed random walks are explained and related to Brownian dynamics and more complicated Monte Carlo methods. Random number generation is reviewed in the context of random walk simulations. Programming techniques and event-driven algorithms are discussed as ways to speed simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxton, M. J. (1999) Lateral diffusion of lipids and proteins. Curr. Topics Membr. 48, 229–282.

    CAS  Google Scholar 

  2. Hall, D. and Minton, A. P. (2003) Macromolecular crowding: Qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta 1649, 127–139.

    PubMed  CAS  Google Scholar 

  3. Saxton, M. J. and Jacobson, K. (1997) Single-particle tracking: Applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399.

    PubMed  CAS  Google Scholar 

  4. Allen, M. P. and Tildesley, D. J. (1989) Computer Simulation of Liquids. Oxford University Press, Oxford. Fortran programs from the appendix are available at http://www.ccp5.ac.uk/librar.shtml.

    Google Scholar 

  5. Frenkel, D. and Smit, B. (1996) Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego.

    Google Scholar 

  6. Rapaport, D. C. (2004) The Art of Molecular Dynamics Simulation, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  7. Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B., and Webb, W. W. (1996) Constrained diffusion or immobile fraction on cell surfaces: A new interpretation. Biophys. J. 70, 2767–2773.

    PubMed  CAS  Google Scholar 

  8. Bouchaud, J.-P. and Georges, A. (1990) Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Reports 195, 127–293.

    Google Scholar 

  9. Saxton, M. J. (1994) Anomalous diffusion due to obstacles: A Monte Carlo study. Biophys. J. 66, 394–401.

    PubMed  CAS  Google Scholar 

  10. Saxton, M. J. (1996) Anomalous diffusion due to binding: A Monte Carlo study. Biophys. J. 70, 1250–1262.

    PubMed  CAS  Google Scholar 

  11. Kusumi, A., Sako, Y., and Yamamoto, M. (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040.

    PubMed  CAS  Google Scholar 

  12. Saxton, M. J. (1993) Lateral diffusion in an archipelago: Single-particle diffusion. Biophys. J. 64, 1766–1780.

    PubMed  CAS  Google Scholar 

  13. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992) Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge. Also available in C and C++ editions.

    Google Scholar 

  14. Saxton, M. J. (2001) Anomalous subdiffusion in fluorescence photobleaching recovery:A Monte Carlo study. Biophys. J. 81, 2226–2240.

    PubMed  CAS  Google Scholar 

  15. Deverall, M. A., Gindl, E., Sinner, E.-K., et al. (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys. J. 88, 1875–1886.

    PubMed  CAS  Google Scholar 

  16. Metzler, R. and Klafter, J. (2004) The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208.

    Google Scholar 

  17. Carslaw, H. S. and Jaeger, J. C. (1959) Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford.

    Google Scholar 

  18. Powles, J. G., Mallett, M. J. D., Rickayzen, G., and Evans, W. A. B. (1992) Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers. Proc. R. Soc. Lond. A 436, 391–403.

    Google Scholar 

  19. Kusumi, A., Nakada, C., Ritchie, K., et al. (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: High-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378.

    PubMed  CAS  Google Scholar 

  20. Anderson, C. M., Georgiou, G. N., Morrison, I. E. G., Stevenson, G. V. W., and Cherry, R. J. (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a chargecoupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 C. J. Cell Sci. 101, 415–425.

    PubMed  Google Scholar 

  21. Schütz, G. J., Schindler, H., and Schmidt, T. (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73, 1073–1080.

    PubMed  Google Scholar 

  22. Barlow, R. J. (1993) Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences. Wiley, Chichester, pp. 155–156.

    Google Scholar 

  23. Schaertl, W. and Sillescu, H. (1993) Dynamics of colloidal hard spheres in thin aqueous suspension layers—Particle tracking by digital image processing and Brownian dynamics computer simulations. J. Colloid Interface Sci. 155, 313–318.

    CAS  Google Scholar 

  24. Crocker, J. C. and Grier, D. G. (1996) Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310.

    CAS  Google Scholar 

  25. Kegel, W. K. and van Blaaderen, A. (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293.

    PubMed  CAS  Google Scholar 

  26. Weeks, E. R. and Weitz, D. A. (2002) Properties of cage rearrangements observed near the colloidal glass transition. Phys. Rev. Lett. 89, 095704.

    PubMed  Google Scholar 

  27. Pusey, P. N., Lekkerkerker, H. N. W., Cohen, E. G. D., and de Schepper, I. M. (1990) Analogies between the dynamics of concentrated charged colloidal suspensions and dense atomic liquids. Physica A 164, 12–27.

    CAS  Google Scholar 

  28. Cohen, E. G. D. and de Schepper, I. M. (1991) Note on transport processes in dense colloidal suspensions. J. Stat. Phys. 63, 241–248.

    Google Scholar 

  29. Heyes, D. M. (1994) Molecular simulations of colloidal liquids. Adv. Colloid Interface Sci. 51, 247–268.

    CAS  Google Scholar 

  30. Schaertl, W. and Sillescu, H. (1994) Brownian dynamics simulations of colloidal hard spheres. Effects of sample dimensionality on self-diffusion. J. Stat. Phys. 74, 687–703.

    Google Scholar 

  31. Lahtinen, J. M., Hjelt, T., Ala-Nissila, T., and Chvoj, Z. (2001) Diffusion of hard disks and rod-like molecules on surfaces. Phys. Rev. E 64, 021204.

    CAS  Google Scholar 

  32. Löwen, H. and Szamel, G. (1993) Long-time self-diffusion coefficient in colloidal suspensions: theory versus simulation. J. Phys. Cond. Matter 5, 2295–2306.

    Google Scholar 

  33. Piazza, R. (2000) Interactions and phase transitions in protein solutions. Curr. Opin. Colloid Interface Sci. 5, 38–43.

    CAS  Google Scholar 

  34. Stradner, A., Sedgwick, H., Cardinaux, F., Poon, W. C. K., Egelhaaf, S. U., and Schurtenberger, P. (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492–495.

    PubMed  CAS  Google Scholar 

  35. Rahman, A. (1964) Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411.

    Google Scholar 

  36. Feller, S. E., Huster, D., and Gawrisch, K. (1999) Interpretation of NOESY cross-relaxation rates from molecular dynamics simulation of a lipid bilayer. J. Am. Chem. Soc. 121, 8963–8964.

    CAS  Google Scholar 

  37. Ermak, D. L. and McCammon, J. A. (1978) Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 1352–1360.

    CAS  Google Scholar 

  38. Madura, J. D., Briggs, J. M., Wade, R. C., et al. (1995) Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian dynamics program. Comput. Phys. Comm. 91, 57–95.

    CAS  Google Scholar 

  39. Elcock, A. H. (2004) Molecular simulations of diffusion and association in multimacromolecular systems. Methods Enzymol. 383, 166–198.

    PubMed  CAS  Google Scholar 

  40. Schlick, T., Beard, D. A., Huang, J., Strahs, D. A., and Qian, X. (2000) Computational challenges in simulating large DNA over long times. Comput. Sci. Eng. 2, 38–51.

    CAS  Google Scholar 

  41. Iniesta, A. and Garcia de la Torre, J. (1990) A second-order algorithm for the simulation of the Brownian dynamics of macromolecular models. J. Chem. Phys. 92, 2015–2018.

    CAS  Google Scholar 

  42. Binder, K. and Heermann, D. W. (1992) Monte Carlo Simulation in Statistical Physics: An Introduction, 2nd ed., Springer, Berlin.

    Google Scholar 

  43. Landau, D. P. and Binder, K. (2000) A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge.

    Google Scholar 

  44. Brannigan, G. and Brown, F. L. H. (2005) Composition dependence of bilayer elasticity. J. Chem. Phys. 122, 074905.

    PubMed  Google Scholar 

  45. Fichthorn, K. A. and Weinberg, W. H. (1991) Theoretical foundations of dynamic Monte Carlo simulations. J. Chem. Phys. 95, 1090–1096.

    CAS  Google Scholar 

  46. Kang, H. C. and Weinberg, W. H. (1992) Dynamic Monte Carlo simulations of surface-rate processes. Acc. Chem. Res. 25, 253–259.

    Google Scholar 

  47. Zuckermann, M. J., Ipsen, J. H., Miao, L., et al. (2004) Modeling lipid-sterol bilayers: Applications to structural evolution, lateral diffusion and rafts. Methods Enzymol. 383, 198–229.

    PubMed  CAS  Google Scholar 

  48. Groot, R. D. and Warren, P. B. (1997) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435.

    CAS  Google Scholar 

  49. Shillcock, J. C. and Lipowsky, R. (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J. Chem. Phys. 117, 5048–5061.

    CAS  Google Scholar 

  50. Symeonidis, V., Karniadakis, G. E., and Caswell, B. (2005) A seamless approach to multiscale complex fluid simulation. Comput. Sci. Eng. 7, 39–46.

    CAS  Google Scholar 

  51. Saxton, M. J. (1993) Lateral diffusion in an archipelago: Dependence on tracer size. Biophys. J. 64, 1053–1062.

    PubMed  CAS  Google Scholar 

  52. Abney, J. R. and Scalettar, B. A. (1992) Molecular crowding and protein organization in biological membranes, in Thermodynamics of Membrane Receptors and Channels. (Jackson, M. B., ed.), CRC Press, Boca Raton, FL, pp. 183–226.

    Google Scholar 

  53. Almeida, P. F. F. and Vaz, W. L. C. (1995) Lateral diffusion in membranes, in Structure and Dynamics of Membranes, vol. 1, (Lipowsky, R. and Sackmann, E., eds.) Elsevier, Amsterdam, pp. 305–357.

    Google Scholar 

  54. Holyst, R., Plewczyński, D., Aksimentiev, A., and Burdzy, K. (1999) Diffusion on curved, periodic surfaces. Phys. Rev. E 60, 302–307.

    CAS  Google Scholar 

  55. Christensen, M. (2004) How to simulate anisotropic diffusion processes on curved surfaces. J. Comput. Phys. 201, 421–438.

    Google Scholar 

  56. Sbalzarini, I. F., Mezzacasa, A., Helenius, A., and Koumoutsakos, P. (2005) Effects of organelle shape on fluorescence recovery after photobleaching. Biophys. J. 89, 1482–1492.

    PubMed  CAS  Google Scholar 

  57. Saxton, M. J. (1995) Single-particle tracking: Effect of corrals. Biophys. J. 69, 389–398.

    PubMed  CAS  Google Scholar 

  58. Nagle, J. F. (1992) Long tail kinetics in biophysics? Biophys. J. 63, 366–370.

    PubMed  CAS  Google Scholar 

  59. Coeurjolly, J.-F. (2000) Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Stat. Software 5,Issue 7 (http://www.jstatsoft.org).

  60. Evans, J. W. (1993) Random and cooperative sequential adsorption. Revs. Mod. Phys. 65, 1281–1329.

    CAS  Google Scholar 

  61. Talbot, J., Tarjus, G., Van Tassel, P. R., and Viot, P. (2000) From car parking to protein adsorption: an overview of sequential adsorption processes. Colloids Surf. A 165, 287–324.

    CAS  Google Scholar 

  62. Wang, J. S. (1994) A fast algorithm for random sequential adsorption of disks. Int. J. Mod. Phys. C5, 707–715.

    Google Scholar 

  63. Ossola, G. and Sokal, A. D. (2004) Systematic errors due to linear congruential random-number generators with the Swendsen-Wang algorithm: A warning. Phys. Rev. E 70, 027701.

    Google Scholar 

  64. Havlin, S. and Ben-Avraham, D. (1987) Diffusion in disordered media. Adv. Phys. 36, 695–798.

    CAS  Google Scholar 

  65. Stauffer, D. (1985) Introduction to Percolation Theory. Taylor & Francis, London.

    Google Scholar 

  66. ben-Avraham, D. and Havlin, S. (2000) Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  67. Tobochnik, J., Laing, D., and Wilson, G. (1990) Random-walk calculation of conductivity in continuum percolation. Phys. Rev. A 41, 3052–3058.

    PubMed  CAS  Google Scholar 

  68. Cichocki, B. and Hinsen, K. (1990) Dynamic computer simulation of concentrated hard sphere suspensions. I. Simulation technique and mean square displacement data. Physica A 166, 473–491.

    Google Scholar 

  69. Heyes, D. M. and Branka, A. C. (1994) Molecular and Brownian dynamics simulations of self-diffusion in inverse power fluids. Phys. Chem. Liq. 28, 95–115.

    CAS  Google Scholar 

  70. Gabdoulline, R. R. and Wade, R. C. (1998) Brownian dynamics simulation of protein-protein diffusional encounter. Methods 14, 329–341.

    PubMed  CAS  Google Scholar 

  71. Elcock, A. H. (2002) Modeling supramolecular assemblages. Curr. Opin. Struct. Biol. 12, 154–160.

    PubMed  CAS  Google Scholar 

  72. Baker, N. A. and McCammon, J. A. (2003) Electrostatic interactions. Meth. Biochem. Anal. 44, 427–440.

    CAS  Google Scholar 

  73. Baker, N. A. (2004) Poisson-Boltzmann methods for biomolecular electrostatics. Methods Enzymol. 383, 94–118.

    PubMed  CAS  Google Scholar 

  74. Dodd, T. L., Hammer, D. A., Sangani, A. S., and Koch, D. L. (1995) Numerical simulations of the effect of hydrodynamic interactions on diffusivities of integral membrane proteins. J. Fluid Mech. 293, 147–180.

    CAS  Google Scholar 

  75. Gabdoulline, R. R. and Wade, R. C. (2002) Biomolecular diffusional association. Curr. Opin. Struct. Biol. 12, 204–213.

    PubMed  CAS  Google Scholar 

  76. Marcelja, S. (1999) Toward a realistic theory of the interaction of membrane inclusions. Biophys. J. 76, 593–594.

    PubMed  CAS  Google Scholar 

  77. Kim, K. S., Neu, J., and Oster, G. (2000) Effect of protein shape on multibody interactions between membrane inclusions. Phys. Rev. E 61, 4281–4285.

    CAS  Google Scholar 

  78. Lagüe, P., Zuckermann, M. J., and Roux, B. (2001) Lipid-mediated interactions between intrinsic membrane proteins: Dependence on protein size and lipid composition. Biophys. J. 81, 276–284.

    PubMed  Google Scholar 

  79. Bohinc, K., Kralj-Iglic, V., and May, S. (2003) Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J. Chem. Phys. 119, 7435–7444.

    CAS  Google Scholar 

  80. Borodich, A., Rojdestvenski, L., and Cottam, M. (2003) Lateral heterogeneity of photosystems in thylakoid membranes studied by Brownian dynamics simulations. Biophys. J. 85, 774–789.

    PubMed  CAS  Google Scholar 

  81. Saxton, M. J. (1997) Single-particle tracking: The distribution of diffusion coefficients. Biophys. J. 72, 1744–1753.

    PubMed  CAS  Google Scholar 

  82. L’Ecuyer, P. (2001) Software for uniform random number generation: distinguishing the good and the bad. Proceedings of the 2001 Winter Simulation Conference (Peters, B. A., Smith, J. S., Medeiros, D. J., and Rohrer, M. W., eds.) Association for Computing Machinery, New York, Vol. 1, pp. 95–105.

    Google Scholar 

  83. Knuth, D. E. (1997) The Art of Computer Programming. Seminumerical Algorithms, vol. 2, 3rd ed., Addison-Wesley, Reading, Mass.

    Google Scholar 

  84. Marsaglia, G. (1968) Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. USA 61, 25–28.

    PubMed  CAS  Google Scholar 

  85. Ziff, R. M. (1996) Effective boundary extrapolation length to account for finite-size effects in the percolation crossing function. Phys. Rev. E. 54, 2547–2554.

    CAS  Google Scholar 

  86. Knüsel, L. (2005) On the accuracy of statistical distributions in Microsoft Excel 2003. Comput. Statist. Data Anal. 48, 445–449.

    Google Scholar 

  87. McCullough, B. D. and Wilson, B. (2005) On the accuracy of statistical procedures in Microsoft Excel. Comput. Statist. Data Anal. 49, 1244–1252.

    Google Scholar 

  88. Nogués, J., Costa-Krämer, J. L., and Rao, K. V. (1998) Are random walks random? Physica A 250, 327–334.

    Google Scholar 

  89. Coddington, P. D. (1996) Tests of random number generators using Ising model simulations. Int. J. Mod. Phys. C 7, 295–303.

    Google Scholar 

  90. Press, W. H. and Teukolsky, S. A. (1992) Portable random number generators. Comput. Phys. 6, 522–524.

    Google Scholar 

  91. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1986) Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  92. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1996) Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing. Cambridge University Press, Cambridge.

    Google Scholar 

  93. Ziff, R. M. (1998) Four-tap shift-register-sequence random-number generators. Comput. Phys. 12, 385–392.

    Google Scholar 

  94. Matsumoto, M. and Nishimura, T. (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Modeling Comput. Simul. 8, 3–30. Available in various languages at http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/eindex.html.

    Google Scholar 

  95. Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number generators. Comput. Phys. 8, 117–121.

    Google Scholar 

  96. Hamilton, K. G. and James, F. (1997) Acceleration of RANLUX. Comput. Phys. Comm. 101, 241–248. Has a Fortran version.

    CAS  Google Scholar 

  97. Park, S. K. and Miller, K. W. (1988) Random number generators—good ones are hard to find. Commun. ACM 31, 1192–1201.

    Google Scholar 

  98. Vattulainen, I., Ala-Nissila, T., and Kankaala, K. (1995) Physical models as tests of randomness. Phys. Rev. E. 52, 3205–3214.

    CAS  Google Scholar 

  99. Vattulainen, I., Kankaala, K., Saarinen, J., and Ala-Nissila, T. (1995) A comparative study of some pseudorandom number generators. Comput. Phys. Comm. 86, 209–226.

    CAS  Google Scholar 

  100. Vattulainen, I. and Ala-Nissila, T. (1995) Mission impossible: find a random pseudorandom number generator. Comput. Phys. 9, 500–504.

    Google Scholar 

  101. Hellekalek, P. (1998) Good random number generators are (not so) easy to find. Math. Comput. Simulation 46, 485–505.

    Google Scholar 

  102. L’Ecuyer, P. (1998) Random number generation, in Handbook on Simulation: Principles, Methodology, Advances, Applications, and Practice. Wiley, New York, pp. 93–137.

    Google Scholar 

  103. L’Ecuyer, P. (2006) Random number generation, in Simulation (Henderson, S. G. and Nelson, B. L., eds.), Elsevier, Amsterdam, pp. 55–81.

    Google Scholar 

  104. Rukhin, A., Soto, J., Nechvatal, J., et al. (2001) A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards and Technology (NIST) Special Publication 800-22 (with revisions May 15, 2001). Available at csrc.nist.gov/publications/nistpubs/along with Unix and PC forms of the NIST Statistical Test Suite.

    Google Scholar 

  105. Mascagni, M. and Srinivasan, A. (2000) SPRNG: a scalable library for pseudorandom number generation. ACM Trans. Math. Software 26, 436–461.

    Google Scholar 

  106. Vattulainen, I. (1999) Framework for testing random numbers in parallel calculations. Phys. Rev. E 59, 7200–7204.

    CAS  Google Scholar 

  107. Ferrenberg, A. M., Landau, D. P., and Wong, Y. J. (1992) Monte Carlo simulations: Hidden errors from “good” random number generators. Phys. Rev. Lett. 69, 3382–3384.

    PubMed  CAS  Google Scholar 

  108. Schmid, F. and Wilding, N. B. (1995) Errors in Monte Carlo simulations using shift register random number generators. Int. J. Mod. Phys. C6, 781–787.

    Google Scholar 

  109. Holian, B. L., Percus, O. E., Warnock, T. T., and Whitlock, P. A. (1994) Pseudorandom number generator for massively parallel molecular-dynamics simulations. Phys. Rev. E 50, 1607–1615.

    Google Scholar 

  110. Tretiakov, K. V. and Wojciechowski, K. W. (1999) Efficient Monte Carlo simulations using a shuffled nested Weyl sequence random number generator. Phys. Rev. E 60, 7626–7628.

    CAS  Google Scholar 

  111. Grassberger, P. (1993) On correlations in “good” random number generators. Phys. Lett. A 181, 43–46.

    Google Scholar 

  112. Gammel, B. M. (1998) Hurst’s rescaled range statistical analysis for pseudorandom number generators used in physical simulations. Phys. Rev. E 58, 2586–2597.

    CAS  Google Scholar 

  113. Shchur, L. N., Heringa, J. R., and Blöte, H. W. J. (1997) Simulation of a directed random-walk model. The effect of pseudo-random-number correlations. Physica A 241, 579–592.

    Google Scholar 

  114. Compagner, A. (1995) Operational conditions for random-number generation. Phys. Rev. E 52, 5634–5645.

    CAS  Google Scholar 

  115. Shchur, L. N. (1999) On the quality of random number generators with taps. Comput. Phys. Comm. 121–122, 83–85.

    Google Scholar 

  116. Filk, T., Marcu, M., and Fredenhagen, K. (1985) Long range correlations in random number generators and their influence on Monte Carlo simulations. Phys. Lett. B 165, 125–130.

    Google Scholar 

  117. Torquato, S. (2002) Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York.

    Google Scholar 

  118. Ripley, B. D. (1987) Stochastic Simulation. Wiley, New York. Has Fortran listings.

    Google Scholar 

  119. Bratley, P., Fox, B. L., and Schrag, L. E. (1987) A Guide to Simulation, 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  120. Gentle, J. E. (1998) Random Number Generation and Monte Carlo Methods. Springer-Verlag, New York.

    Google Scholar 

  121. Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York.

    Google Scholar 

  122. Marsaglia, G. and Tsang, W. W. (2000) The ziggurat method for generating random variables. J. Stat. Software 5,Issue 8 (http://www.jstatsoft.org). Has a C listing.

  123. Leong, P. H. W., Zhang, G., Lee, D.-U., Luk, W., and Villasenor, J. D. (2005) A comment on the implementation of the ziggurat method. J. Stat. Software 12,Issue 7 (http://www.jstatsoft.org).

  124. Dowd, K. and Severance, C. R. (1998) High Performance Computing, 2nd ed., O’Reilly & Associates, Sebastopol, CA.

    Google Scholar 

  125. Wadleigh, K. R. and Crawford, I. L. (2000) Software Optimization for High Performance Computing. Prentice Hall PTR, Upper Saddle River, NJ.

    Google Scholar 

  126. Lindahl, E., Hess, B., and van der Spoel, D. (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317.

    CAS  Google Scholar 

  127. Novotny, M. A. (1995) A new approach to an old algorithm for the simulation of Ising-like systems. Comput. Phys. 9, 46–52.

    Google Scholar 

  128. Bortz, A. B., Kalos, M. H., and Lebowitz, J. L. (1975) New algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys. 17, 10–18.

    Google Scholar 

  129. Battaile, C. C., Srolovitz, D. J., and Butler, J. E. (1997) A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamond. J. Appl. Phys. 82, 6293–6300.

    CAS  Google Scholar 

  130. Brosilow, B. J., Ziff, R. M., and Vigil, R. D. (1991) Random sequential adsorption of parallel squares. Phys. Rev. E 43, 631–638.

    CAS  Google Scholar 

  131. Zheng, L. H. and Chiew, Y. C. (1989) Computer simulation of diffusion-controlled reactions in dispersions of spherical sinks. J. Chem. Phys. 90, 322–327.

    CAS  Google Scholar 

  132. Tobochnik, J. (1990) Efficient random walk algorithm for computing conductivity in continuum percolation systems. Comput. Phys. 4, 181–184.

    Google Scholar 

  133. Torquato, S. and Kim, I. C. (1989) Efficient simulation technique to compute effective properties of heterogeneous media. Appl. Phys. Lett. 55, 1847–1849.

    Google Scholar 

  134. Torquato, S., Kim, I. C., and Cule, D. (1999) Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media via first-passage-time equations. J. Appl. Phys. 85, 1560–1571.

    CAS  Google Scholar 

  135. Hwang, C. O., Given, J. A., and Mascagni, M. (2001) The simulation-tabulation method for classical diffusion Monte Carlo. J. Comput. Phys. 174, 925–946.

    CAS  Google Scholar 

  136. van Zon, J. S. and ten Wolde, P. R. (2005) Simulating biochemical networks at the particle level and in time and space: Green’s function reaction dynamics. Phys. Rev. Lett. 94, 128103.

    PubMed  Google Scholar 

  137. Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    CAS  Google Scholar 

  138. Slepchenko, B. M., Schaff, J. C., Carson, J. H., and Loew, L. M. (2002) Computational cell biology: Spatiotemporal simulation of cellular events. Annu. Rev. Biophys. Biomol. Struct. 31, 423–441.

    PubMed  CAS  Google Scholar 

  139. Brooks, C. L. (2005) Special issue: Modern tools for macromolecular simulation and modeling. J. Comput. Chem. 26, 1667.

    CAS  Google Scholar 

  140. Takahashi, K., Arjunan, S. N. V., and Tomita, M. (2005) Space in systems biology of signaling pathways—towards intracellular molecular crowding in silico. FEBS Lett. 579, 1783–1788.

    PubMed  CAS  Google Scholar 

  141. Dix, J. A., Hom, E. F. Y., and Verkman, A. S. (2006) Fluorescence correlation spectroscopy simulation of photophysical phenomena and molecular interactions: A molecular dynamics/Monte Carlo approach. J. Phys. Chem. B 110, 1896–1906.

    PubMed  CAS  Google Scholar 

  142. Coggan, J. S., Bartol, T. M., Esquenazi, E., et al. (2005) Evidence for ectopic neurotransmission at a neuronal synapse. Science 309, 446–451.

    PubMed  CAS  Google Scholar 

  143. Berg, H. C. (1993) Random Walks in Biology, 2nd ed., Princeton University Press, Princeton, NJ.

    Google Scholar 

  144. Crank, J. (1975) The Mathematics of Diffusion, 2nd ed., Oxford University Press, Oxford.

    Google Scholar 

  145. Hughes, B. D. (1995, 1996) Random Walks and Random Environments, 2 vols. Oxford University Press, Oxford.

    Google Scholar 

  146. Redner, S. (2001) A Guide to First-Passage Processes. Cambridge University Press, Cambridge.

    Google Scholar 

  147. Rudnick, J. and Gaspari, G. (2004) Elements of the Random Walk: An Introduction for Advanced Students and Researchers. Cambridge University Press, Cambridge.

    Google Scholar 

  148. Stauffer, D. and Aharony, A. (1992) Introduction to Percolation Theory, 2nd ed., Taylor & Francis, London.

    Google Scholar 

  149. Bassingthwaighte, J. B., Liebovitch, L. S., and West, B. J. (1994) Fractal Physiology. Oxford University Press, Oxford.

    Google Scholar 

  150. Dewey, T. G. (1997) Fractals in Molecular Biophysics. Oxford University Press, Oxford.

    Google Scholar 

  151. Liebovitch, L. S. (1998) Fractals and Chaos Simplified for the Life Sciences. Oxford University Press, New York.

    Google Scholar 

  152. Sedgewick, R. (1988) Algorithms. Addison-Wesley, Reading, MA.

    Google Scholar 

  153. Skiena, S. S. (1998) The Algorithm Design Manual. Springer TELOS-The Electronic Library of Science, Santa Clara, CA.

    Google Scholar 

  154. O’Rourke, J. (1994) Computational Geometry in C. Cambridge University Press, Cambridge.

    Google Scholar 

  155. Glassner, A. S. (1990) Graphics Gems. Academic Press, Boston. There are now 5 volumes in the series, with various editors.

    Google Scholar 

  156. Yi, Y.-B. and Sastry, A. M. (2004) Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution. Proc. R. Soc. Lond. A 460, 2353–2380.

    Google Scholar 

  157. Tremmel, I. G., Kirchhoff, H., Weis, E., and Farquhar, G. D. (2003) Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim. Biophys. Acta 1607, 97–109.

    PubMed  CAS  Google Scholar 

  158. Tremmel, I. G., Weis, E., and Farquhar, G. D. (2005) The influence of protein-protein interactions on the organization of proteins within thylakoid membranes. Biophys. J. 88, 2650–2660.

    PubMed  CAS  Google Scholar 

  159. Elcock, A. H. (2003) Atomic-level observation of macromolecular crowding effects: Escape of a protein from the GroEL cage. Proc. Natl. Acad. Sci. USA 100, 2340–2344.

    PubMed  CAS  Google Scholar 

  160. Saffman, P. G. and Delbrück, M. (1975) Brownian motion in biological membranes. Proc. Natl. Acad. Sci. USA 72, 3111–3113.

    PubMed  CAS  Google Scholar 

  161. Garcia de la Torre, J., Huertas, M. L., and Carrasco, B. (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719–730.

    PubMed  CAS  Google Scholar 

  162. Bicout, D. J. and Field, M. J. (1996) Stochastic dynamics simulations of macromolecular diffusion in a model of the cytoplasm of Escherichia coli. J. Phys. Chem. 100, 2489–2497.

    CAS  Google Scholar 

  163. Hou, L., Luby-Phelps, K., and Lanni, F. (1990) Brownian motion of inert tracer macromolecules in polymerized and spontaneously bundled mixtures of actin and filamin. J. Cell Biol. 110, 1645–1654.

    PubMed  CAS  Google Scholar 

  164. Hou, L., Lanni, F., and Luby-Phelps, K. (1990) Tracer diffusion in F actin and Ficoll mixtures. Toward a model for cytoplasm. Biophys. J. 58, 31–44.

    PubMed  CAS  Google Scholar 

  165. Weiss, G. H. and Rubin, R. J. (1983) Random walks: Theory and selected applications. Adv. Chem. Phys. 52, 363–505, Eq. 2. 156.

    CAS  Google Scholar 

  166. Gradshteyn, I. S. and Ryzhik, I. M. (2000) Table of Integrals, Series, and Products, 6th ed., Academic Press, San Diego, p. 609, Eq. 4.632.2.

    Google Scholar 

  167. Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. U. S. Government Printing Office, Washington, DC, p. 255, Eq. 6.1.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Saxton, M.J. (2007). Modeling 2D and 3D Diffusion. In: Dopico, A.M. (eds) Methods in Membrane Lipids. Methods in Molecular Biology™, vol 400. Humana Press. https://doi.org/10.1007/978-1-59745-519-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-519-0_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-662-7

  • Online ISBN: 978-1-59745-519-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics