Skip to main content

Computational and Statistical Methodologies for ORFeome Primary Structure Analysis

  • Protocol
Comparative Genomics

Summary

Codon usage and context are biased in open reading frames (ORFs) of most genomes. Codon usage is largely influenced by biased genome G+C pressure, in particular in prokaryotes, but the general rules that govern the evolution of codon context remain largely elusive. To shed new light into this question, we have developed computational, statistical, and graphical tools for analysis of codon context on an ORFeome wide scale. Here, we describe these methodologies in detail and show how they can be used for analysis of ORFs of any genome sequenced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogle, J. M. and Ramakrishnan, V. (2005) Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129–177.

    Article  CAS  PubMed  Google Scholar 

  2. Irwin, B., Heck, J. D., and Hatfields, W. G. (1995) Codon pair utilization biases influence translational elongation step times. J. Biol. Chem. 270, 22, 801–22, 806.

    Google Scholar 

  3. Young, E. T., Sloan, J. S., and Riper, K. V. (2000) Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154, 1053–1068.

    CAS  PubMed  Google Scholar 

  4. Borstnik, B. and Pumpernik, D. (2002) Tandem repeats in protein coding regions of primate genes. Genome Res. 12, 909–915.

    Article  CAS  PubMed  Google Scholar 

  5. Karlin, S., Brocchieri, L., Bergman, A., Mrazek, J., and Gentles, A. J. (2002) Amino acid runs in eukaryotic proteomes and disease associations. PNAS 99, 333–338.

    Article  CAS  PubMed  Google Scholar 

  6. Flis, K., Hinzpeter, A., Edelman, A., and Kurlandzka, A. (2005) The functioning of mammalian CIC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p. Biochem. J. 390, 655–664.

    Article  CAS  PubMed  Google Scholar 

  7. Folley, L. S. and Yarus, M. (1989) Codon contexts from weakly expressed genes reduce expression in vivo. J. Mol. Biol. 209, 359–378.

    Article  CAS  PubMed  Google Scholar 

  8. Cliften, P., Fulton, R., Wilson, R., and Johnston, M. (2006) After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172, 863–872.

    Article  CAS  PubMed  Google Scholar 

  9. Van de Lagemaat, L. N., Gagnier, L., Medstrand, P., and Mager, D. L. (2005) Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res. 15, 1243–1249.

    Article  PubMed  Google Scholar 

  10. Lin, Y. W., Thi, D. A. D., Kuo, P. L., et al. (2005) Polymorphisms associated with the DAZ genes on the human Y chromosome. Genomics 86, 431–438.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, S. L., Lee, W., Hottes, A. K., and McAdams, H. H. (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. USA 101, 3480–3485.

    Article  CAS  PubMed  Google Scholar 

  12. Berg, O. G. and Silva, P. J. (1997) Codon bias in Escherichia coli: the influence of codon context on mutation and selection. Nucleic Acids Res. 25, 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  13. Akashi, H. (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136, 927–935.

    CAS  PubMed  Google Scholar 

  14. Percudani, R. and Ottonello, S. (1999) Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae. Mol. Biol. Evol. 16, 1752–1762.

    CAS  PubMed  Google Scholar 

  15. Boycheva, S., Chkodrov, G., and Ivanov, I. (2003) Codon pairs in the genome of Escherichia coli. Bioinformatic 19, 987–998.

    Article  CAS  Google Scholar 

  16. Shah, A. A., Giddings, M. C., Parvaz, J. B., Gesteland, R. F., Atkins, J. F., and Ivanov, I. P. (2002) Computational identification of putative programmed translational frameshift sites. Bioinformatics 18, 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  17. Fedorov, A., Saxonov, S., and Gilbert, W. (2002) Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res. 30, 1192–1197.

    Article  CAS  PubMed  Google Scholar 

  18. Duan, J. and Antezana, M. A. (2003) Mammalial mutation pressure, synonymous codon choice, and mRNA degradation. J. Mol. Evol. 57, 649–701.

    Article  Google Scholar 

  19. Sharp, P. M. and Li, W. H. (1987) The codon adaptation index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295.

    Article  CAS  PubMed  Google Scholar 

  20. Haberman, S. J. (1973) The analysis of residuals in cross-classified tables. Biometrics 29, 205–220.

    Article  Google Scholar 

  21. Simonoff, J. (2003) Analyzing Categorical Data. Springer-Verlag, New York.

    Google Scholar 

  22. Everitt, B. S., Landau, S., and Leese, M. (2001) Cluster Analysis. Hodder Arnold, London, UK.

    Google Scholar 

  23. Moura, G., Pinheiro, M., Silva, R., et al. (2005) Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol. 6, R28.

    Article  PubMed  Google Scholar 

  24. Wright, F. (1990) The ‘effective number of codons’ used in a gene. Gene 87, 23–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by FCT/FEDER project grant REF: POCI/BIA-MIC/55466/04. GM is supported by FCT (SFRH/BPD/7195/2001). MASS is an EMBO YIP and his work is supported by the FCT/POCI program and the Human Frontier Science Program (Grant RGP45/2005). AVF is member of the R&D Unit “Matemática e Aplicações,” University of Aveiro (through POCTI/FCT, cofinanced by FEDER).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Moura, G., Pinheiro, M., Freitas, A.V., Oliveira, J.L., Santos, M.A.S. (2007). Computational and Statistical Methodologies for ORFeome Primary Structure Analysis. In: Bergman, N.H. (eds) Comparative Genomics. Methods in Molecular Biology™, vol 395. Humana Press. https://doi.org/10.1007/978-1-59745-514-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-514-5_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-693-1

  • Online ISBN: 978-1-59745-514-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics