Skip to main content

Phylogenetic Footprinting to Find Functional DNA Elements

  • Protocol
Comparative Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 395))

Summary

Phylogenetic footprinting is powerful technique for finding functional elements from sequence data. Functional elements are thought to have greater sequence constraint than nonfunctional elements, and, thus, undergo a slower rate of sequence change through time. Phylogenetic footprinting uses comparisons of homologous sequences from closely related organisms to identify “phylogenetic footprints,” regions with slower rates of sequence change than background. This does not require prior characterization of the sequence in question, therefore, it can be used in a wide range of applications. In particular, it is useful for the identification of functional elements in noncoding DNA, which are traditionally difficult to detect. Here, we describe in detail how to perform a simple yet powerful phylogenetic footprinting analysis. As an example, we use ribosomal DNA repeat sequences from various Saccharomyces yeasts to find functional noncoding DNA elements in the intergenic spacer, and explain critical considerations in performing phylogenetic footprinting analyses, including the number of species and species range, and some of the available software. Our methods are broadly applicable and should appeal to molecular biologists with little experience in bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frazer, K. A., Elnitski, L., Church, D. M., Dubchak, I., and Hardison, R. C. (2003) Cross-species sequence comparisons: a review of methods and available resources. Genome Res. 13, 1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Hardison, R. C. (2003) Comparative genomics. PLoS Biol. 1, 156–160.

    Article  CAS  Google Scholar 

  3. Moses, A. M., Chiang, D. Y., Kellis, M., Lander, E. S., and Eisen, M. B. (2003) Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evol. Biol. 3, 19.

    Article  PubMed  Google Scholar 

  4. Hardison, R. C. (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet. 16, 369–372.

    Article  CAS  PubMed  Google Scholar 

  5. Gumucio, D. L., Shelton, D. A., Bailey, W. J., Slightom, J. L., and Goodman, M. (1993) Phylogenetic footprinting reveals unexpected complexity in trans factor binding upstream from the ε-globin gene. Proc. Natl. Acad. Sci. USA 90, 6018–6022.

    Article  CAS  PubMed  Google Scholar 

  6. Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D. (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell 15, 1296–1309.

    Article  CAS  PubMed  Google Scholar 

  7. Brachat, S., Dietrich, F. S., Voegeli, S., et al. (2003) Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii. Genome Biol. 4, R45.

    Article  Google Scholar 

  8. Ganley, A. R. D., Hayashi, K., Horiuchi, T., and Kobayashi, T. (2005) Identifying gene-independent noncoding functional elements in the yeast ribosomal DNA by phylogenetic footprinting. Proc. Natl. Acad. Sci. USA 102, 11,787–11,792.

    Google Scholar 

  9. Dermitzakis, E. T., Reymond, A., Scamuffa, N., et al. (2003) Evolutionary discrimination of mammalian conserved non-genic sequences (CNGs). Science 302, 1033–1035.

    Article  CAS  PubMed  Google Scholar 

  10. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254.

    Article  CAS  PubMed  Google Scholar 

  11. Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M., and Dubchak, I. (2004) VISTA: computational tools for comparative genomics. Nucl. Acids Res. 32, W273–W279.

    Article  CAS  PubMed  Google Scholar 

  12. Ovcharenko, I., Loots, G. G., Hardison, R. C., Miller, W., and Stubbs, L. (2004) zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res. 14, 472–477.

    Article  CAS  PubMed  Google Scholar 

  13. Aerts, S., Van Loo, P., Thijs, G., et al. (2005) TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucl. Acids Res. 33, W393–W396.

    Article  CAS  PubMed  Google Scholar 

  14. Sinha, S., Blanchette, M., and Tompa, M. (2004) PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinform. 5, 170.

    Article  Google Scholar 

  15. Nix, D. A. and Eisen, M. B. (2005) GATA: a graphic alignment tool for comparative sequence analysis. BMC Bioinform. 6, 9.

    Article  Google Scholar 

  16. Long, E. O. and Dawid, I. B. (1980) Repeated genes in eukaryotes. Ann. Rev. Biochem. 49, 727–764.

    Article  CAS  PubMed  Google Scholar 

  17. Kurtzman, C. P. and Robnett, C. J. (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res. 3, 417–432.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  19. Schug, J. and Overton, G. C. (1997) TESS: Transcription Element Search Software on the WWW. University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  20. Moses, A. M., Chiang, D. Y., Pollard, D. A., Iyer, V. N., and Eisen, M. B. (2004) MONKEY: identifying conserved transcription-factor binding sites in mulitple alignments using a binding site-specific evolutionary model. Genome Biol. 5, R98.

    Article  PubMed  Google Scholar 

  21. Göttgens, B., Gilbert, J. G. R., Barton, L. M., et al. (2001) Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res. 11, 87–97.

    Article  PubMed  Google Scholar 

  22. Pride, D. T. and Blaser, M. J. (2002) Concerted evolution between duplicated genetic elements in Helicobacter pylori. J. Mol. Biol. 316, 629–642.

    CAS  Google Scholar 

  23. Morgenstern, B. (2004) DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucl. Acids Res. 32, W33–W36.

    Article  CAS  PubMed  Google Scholar 

  24. Brudno, M., Do, C. B., Cooper, G. M., et al. (2003) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–731.

    Article  CAS  PubMed  Google Scholar 

  25. Schneider, T. D. and Stephens, R. M. (1990) Sequence logos: a new way to display consensus sequences. Nucl. Acids Res. 18, 6097–6100.

    Article  CAS  PubMed  Google Scholar 

  26. Crooks, G. E., Hon, G., Chandonia, J. -M., and Brenner, S. E. (2004) WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi, T. (2003) The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol. Cell. Biol. 23, 9178–9188.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi, T. and Ganley, A. R. D. (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309, 1581–1584.

    Article  CAS  PubMed  Google Scholar 

  29. Musters, W., Knol, J., Maas, P., Dekker, A. F., van Heerikhuizen, H., and Planta, R. J. (1989) Linker scanning of the yeast RNA polymerase I promoter. Nucl. Acids Res. 17, 9661–9678.

    Article  CAS  PubMed  Google Scholar 

  30. Challice, J. M. and Segall, J. (1989) Transcription of the 5S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14-base pair internal control region. J. Biol. Chem. 264, 20,060–20,067.

    CAS  Google Scholar 

  31. Brown, B. R., Bartholomew, B., Kassavetis, G. A., and Geiduschek, E. P. (1992) Topography of transcription factor complexes on the Saccharomyces cerevisiae 5S RNA gene. J. Mol. Biol. 228, 1063–1077.

    Article  Google Scholar 

  32. Miller, C. A. and Kowalski, D. (1993) cis-Acting components in the replication origin from ribosomal DNA of Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5360–5369.

    CAS  Google Scholar 

  33. Burkhalter, M. D. and Sogo, J. M. (2004) rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol. Cell. 15, 409–421.

    Article  CAS  PubMed  Google Scholar 

  34. Laloraya, S., Guacci, V., and Koshland, D. (2000) Chromosomal addresses of the cohesin component Mcd1p. J. Cell Biol. 151, 1047–1056.

    Article  CAS  PubMed  Google Scholar 

  35. Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) Proteins that bind to the yeast rDNA enhancer. J. Biol. Chem. 264, 9061–9068.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 13141205, 17080010, and 17370065 from the Ministry of Education, Science and Culture, Japan, and by a Human Frontier Science Program grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Ganley, A.R., Kobayashi, T. (2007). Phylogenetic Footprinting to Find Functional DNA Elements. In: Bergman, N.H. (eds) Comparative Genomics. Methods in Molecular Biology™, vol 395. Humana Press. https://doi.org/10.1007/978-1-59745-514-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-514-5_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-693-1

  • Online ISBN: 978-1-59745-514-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics