Skip to main content

Fastcompare

A Nonalignment Approach for Genome-Scale Discovery of DNA and mRNA Regulatory Elements Using Network-Level Conservation

  • Protocol
Comparative Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 395))

Summary

Here, we describe the usage of Fastcompare, a simple and efficient comparative approach for finding short noncoding DNA (e.g., transcription factor binding sites) and mRNA (e.g., microRNA target sites) sequences that are globally conserved between two genomes. Fastcompare is based on the network-level conservation principle, according to which the connectivity of transcriptional regulatory networks should be largely conserved between two closely related genomes. We describe here the procedure for applying Fastcompare to large genomes (with an emphasis on metazoan genomes), including scoring of exhaustive motif lists, determination of conservation threshold using sequence randomizations, and discovery of interactions between regulatory elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elemento, O. and Tavazoie, S. (2005) Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach.Genome Biol 6, R18.

    Article  PubMed  Google Scholar 

  2. Pritsker, M., Liu, Y., Beer, M., and Tavazoie, S. (2004) Whole-genome discovery of transcription factor binding sites by network-level conservation. Genome Res. 14, 99–108.

    Article  CAS  PubMed  Google Scholar 

  3. Chan, C. S., Elemento, O., and Tavazoie, S. (2005) Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Computational Biology 1, e69.

    Article  PubMed  Google Scholar 

  4. Wasserman, W. W., Palumbo, M., Thompson, W., Fickett, J. W., and Lawrence, C. E. (2000) Human-mouse genome comparisons to locate regulatory sites. Nat. Genet. 26, 225–228.

    Article  CAS  PubMed  Google Scholar 

  5. Blanchette, M., and Tompa, M. (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res. 12, 739–748.

    Article  CAS  PubMed  Google Scholar 

  6. Xie, X., Lu, J., Kulbokas, E., et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434, 338–345.

    Article  CAS  PubMed  Google Scholar 

  7. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254.

    Article  CAS  PubMed  Google Scholar 

  8. Cliften, P., Sudarsanam, P., Desikan, A., et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, T. I., Rinaldi, N. J., Robert, F., et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.

    Article  CAS  PubMed  Google Scholar 

  10. Matys, V., Kel-Margoulis, O. V., Fricke, E., et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110.

    Article  CAS  PubMed  Google Scholar 

  11. Griffiths-Jones, S. (2004) The microRNA Registry. Nucleic Acids Res. 32, D109–D111.

    Article  CAS  PubMed  Google Scholar 

  12. Needleman, S. B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

    Article  CAS  PubMed  Google Scholar 

  13. Tavazoie, S., Hughes, J., Campbell, M., Cho, R., and Church, G. (1999) Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  15. Birney, E., Andrews, D., Caccamo, M., et al. (2006) Ensembl 2006. Nucl. Acids Res. 34, D556–D561.

    Article  CAS  PubMed  Google Scholar 

  16. Altschul, S., Madden, T., Schaffer, A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  17. Birney, E., Clamp, M., and Durbin, R. (2004) GeneWise and Genomewise. Genome Res 14, 988–995.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobs Anderson, J. S., and Parker, R. (2000) Computational identification of cis-acting elements affecting post-transcriptional control of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 28, 1604–1617.

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien, K. P., Remm, M., and Sonnhammer, E. L. (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucl. Acids Res. 33, D476–D480.

    Article  PubMed  Google Scholar 

  20. Stein, L., Bao, Z., Blasiar, D., et al. (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1, E45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Chang S. Chan and Kellen Olszewski for critical reading of preliminary versions of this document. The authors are also grateful to members of the Tavazoie group for insightful discussions. Saeed Tavazoie is supported by National Institutes of Health, National Science Foundation, and Defense Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Elemento, O., Tavazoie, S. (2007). Fastcompare. In: Bergman, N.H. (eds) Comparative Genomics. Methods in Molecular Biology™, vol 395. Humana Press. https://doi.org/10.1007/978-1-59745-514-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-514-5_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-693-1

  • Online ISBN: 978-1-59745-514-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics