Skip to main content

Analysis of Raft Affinity of Membrane Proteins by Detergent-Insolubility

  • Protocol
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

Isolation of detergent-resistant membranes (DRMs; also known as detergent-insoluble glycolipid-enriched membranes [DIGs] or glycolipid-enriched membranes [GEMs]) that are enriched in proteins and lipids with a high affinity for rafts is one of the simplest and most widely used methods for studying rafts. However, it is essential to understand the limitations as well as the advantages of this method. DRMs do not correspond precisely to rafts in living cells. For this reason, finding a protein enriched in DRMs does not prove that it was in rafts in the living cell. Furthermore, the fraction of a protein found in DRMs provides no quantitative information about the fraction of the protein originally in rafts. In fact, DRMs may be isolated from membranes that did not even contain rafts before detergent extraction. DRM-association is useful because it reflects a high-inherent affinity of a protein for the ordered membrane state found in rafts. Treatments that affect the DRM-association of a protein can thus be inferred to affect its raft affinity. Current models suggest that rafts may form in a regulated manner, often associated with clustering of membrane proteins or lipids, during processes such as signal transduction. DRM-association is a read-out of whether a protein is likely to associate with rafts that form under these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. London, E. and Brown, D. A. (2000) Insolubility of lipids in Triton X-100. Physical origin and relationship to sphingolipid/cholesterol domains (rafts). Biochim. Biophys. Acta (Biomembranes) 1508, 182–195.

    Article  CAS  Google Scholar 

  2. Xu, X. and London, E. (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849.

    Article  CAS  PubMed  Google Scholar 

  3. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., and London, E. (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. J. Biol. Chem. 276, 33,540–33,546.

    Article  CAS  PubMed  Google Scholar 

  4. Megha and London, E. (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J. Biol. Chem. 279, 9997–10,004.

    CAS  PubMed  Google Scholar 

  5. Brown, D. A. and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.

    Article  CAS  PubMed  Google Scholar 

  6. Hooper, N. M. and Turner, A. J. (1988) Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J. 250, 865–869.

    CAS  PubMed  Google Scholar 

  7. Kenworthy, A. K., Petranova, N., and Edidin, M. (2000) High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.

    CAS  PubMed  Google Scholar 

  8. Kenworthy, A. K., Nichols, B. J., Remmert, C. L., et al. (2004) Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746.

    Article  CAS  PubMed  Google Scholar 

  9. Glebov, O. O. and Nichols, B. J. (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat. Cell Biol. 6, 238–243.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, P., Varma, R., Sarasij, R. C., et al. (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589.

    Article  CAS  PubMed  Google Scholar 

  11. Harder, T., Scheiffele, P., Verkade, P., and Simons, K. (1998) Lipid-domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.

    Article  CAS  PubMed  Google Scholar 

  12. Rothberg, K. G., Ying, Y.-S., Kamen, B. A., and Anderson, R. G. W. (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938.

    Article  CAS  PubMed  Google Scholar 

  13. Pralle, A., Keller, P., Florin, E.-L., Simons, K., and Hörber, J. K. H. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008.

    Article  CAS  PubMed  Google Scholar 

  14. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A., and Jacobson, K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284.

    Article  CAS  PubMed  Google Scholar 

  15. Heerklotz, H. (2002) Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83, 2693–2701.

    Article  CAS  PubMed  Google Scholar 

  16. Drevot, P., Langlet, C., Guo, X.-J., et al. (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908.

    Article  CAS  PubMed  Google Scholar 

  17. Vilhardt, F. and Van Deurs, B. (2004) The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J. 23, 739–748.

    Article  CAS  PubMed  Google Scholar 

  18. Magnani, F., Tate, C. G., Wynne, S., Williams, C., and Haase, J. (2004) Partitioning of the serotonin transporter into lipid microdomains modulates transport of serotonin. J. Biol. Chem. 279, 38,770–38,778.

    Article  CAS  PubMed  Google Scholar 

  19. Röper, K., Corbeil, D., and Huttner, W. B. (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nat. Cell Biol. 2, 582–592.

    Article  PubMed  Google Scholar 

  20. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., and Simons, K. (2003) Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100, 5795–5800.

    Article  CAS  PubMed  Google Scholar 

  21. Melkonian, K. A., Chu, T., Tortorella, L. B., and Brown, D. A. (1995) Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells. Biochemistry 34, 16,161–16,170.

    Article  CAS  PubMed  Google Scholar 

  22. Mattingly, R. R. (2002) Mitogen-Activated Protein Kinase Signaling in Drug-Resistant Neuroblastoma Cells, in Cancer Cell Signaling: Methods and Protocols, (Terrian, D. M., ed.), Humana Press Inc., Totowa, NJ, pp. 71–84.

    Chapter  Google Scholar 

  23. Korzeniowski, M., Kwiatkowska, K., and Sobota, A. (2003) Insights into the association of FcγRII and TCR with detergent-resistant membrane domains: Isolation of the domains in detergent-free density gradients facilitates membrane fragment reconstitution. Biochemistry 42, 5358–5367.

    Article  CAS  PubMed  Google Scholar 

  24. Sargiacomo, M., Sudol, M., Tang, Z., and Lisanti, M. P. (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122, 789–807.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Brown, D.A. (2007). Analysis of Raft Affinity of Membrane Proteins by Detergent-Insolubility. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics