Skip to main content

Small-Angle Neutron Scattering to Detect Rafts and Lipid Domains

  • Protocol
Lipid Rafts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 398))

Abstract

The detection and characterization of lateral heterogeneities or domains in lipid mixtures has attracted considerable interest, because of the roles that such domains may play in biological function. Studies on both model and cell membranes demonstrate that domains can be formed over a wide range of length scales, as small as nanometers in diameter up to microns. However, although the size and shape of micron-sized domains are readily visualized in freely suspended vesicles, by techniques such as fluorescence microscopy, imaging of nanometer-sized domains has thus far been performed only on substrate-supported membranes (through, e.g., atomic force microscopy), whereas additional evidence for nanodomains has depended on indirect detection (through, e.g., nuclear magnetic resonance or fluorescence resonance energy transfer). Small-angle neutron scattering (SANS) is a technique able to characterize structural features on nanometer length scales and can be used to probe freely suspended membranes. As such, SANS shows promise to characterize nanometer-sized domains in model membranes. The authors have recently demonstrated the efficacy of SANS to detect and characterize nanodomains in freely suspended mixed lipid vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edidin, M. (2003) The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  CAS  PubMed  Google Scholar 

  2. Veatch, S. L., Polozov, I. V., Gawrisch, K., and Keller, S. L. (2004) Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922.

    Article  CAS  PubMed  Google Scholar 

  3. Polozov, I. V. and Gawrisch, K. (2004) Domains in Binary SOPC/POPE Lipid Mixtures Studied by Pulsed Field Gradient 1H MAS NMR. Biophys. J. 87, 1741–1751.

    Article  CAS  PubMed  Google Scholar 

  4. Chiang, Y.-W., Shimoyama, Y., Feigenson, G. W., and Freed, J. H. (2004) Dynamic Molecular Structure of DPPC-DLPC-Cholesterol Ternary Lipid System by Spin-Label Electron Spin Resonance. Biophys. J. 87, 2483–2496.

    Article  CAS  PubMed  Google Scholar 

  5. Kahya, N., Brown, D. A., and Schwille, P. (2005) Raft partitoning and dynamic behavior of human placental alkaline phosphatasein giant unilamellar vesicles. Biochemistry 44, 7479–7489.

    Article  CAS  PubMed  Google Scholar 

  6. Silvius, J. R. (2003) Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane. Biophys. J. 85, 1034–1045.

    Article  CAS  PubMed  Google Scholar 

  7. Kusumi, A., Nakada, C., Ritchie, K., et al. (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, C., Furlong, J., Burgos, P., and Johnston, L. J. (2002) The Size of Lipid Rafts: An Atomic Force Microscopy Study of Ganglioside GM1 Domains in Sphingomyelin/DOPC/Cholesterol Membranes. Biophys. J. 82, 2526–2535.

    Article  CAS  PubMed  Google Scholar 

  9. Ianoul, A., Burgos, P., Lu, Z., Taylor, R. S., and Johnston, L. J. (2003) Phase Separation and Interleaflet Coupling in Supported Phospholipid Bilayers Visualized by Near-Field Scanning Optical Microscopy in Aqueous Solution. Langmuir 19, 9246–9254.

    Article  CAS  Google Scholar 

  10. Pencer, J., Mills, T., Anghel, V., Krueger, S., Epand, R. M., and Katsaras, J. (2005) Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering. Eur. Phys. J. E 18, 447–458.

    Article  CAS  PubMed  Google Scholar 

  11. Veatch, S. L., Leung, S. S., Hancock, R. E., and Thewalt, J. L. (2007) Fluorescent probes alter miscibility phase boundaries in ternary vesicles. J. Chem. Phys, B. 111, 502–504.

    Article  CAS  Google Scholar 

  12. Sears, V. F. (1992) Neutron Scattering Lengths and Cross Sections. Neutron News 3, 26–37.

    Article  Google Scholar 

  13. Nagle, J. F. and Tristram-Nagle, S. (2000) Structure of Lipid Bilayers. Biochim. Biophys. Acta 1469, 159–195.

    CAS  PubMed  Google Scholar 

  14. Knoll, W., Schmidt, G., Ibel, K., and Sackmann, E. (1985) Small-Angle Neutron Scattering Study of Lateral Phase Separation in Dimyristoylphosphatidylcholine-Cholesterol Mixed Membranes. Biochemistry 24, 5240–5246.

    Article  CAS  PubMed  Google Scholar 

  15. Buboltz, J. T. and Feigenson, G. W. (1999) A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim. Biophys. Acta 1417, 232–245.

    Article  CAS  PubMed  Google Scholar 

  16. Glinka, C., Barker, J., Hammouda, B., Krueger, S., Moyer, J. J., and Orts, W. J. (1998) The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology. J. Appl. Cryst. 31, 430–441.

    Article  CAS  Google Scholar 

  17. Pencer, J., Anghel, V. N. P., Kučerka, N., and Katsaras, J. ((2006) Scattering from Laterally Heterogeneous Vesicles I: Model Independent Analysis J. Appl. Cryst. 39.

    Google Scholar 

  18. Henderson, S. J. (1996) Monte Carlo Modeling of Small-Angle Scattering Data from Non-Interacting Homogeneous and Heterogeneous Particles in Solution. Biophys. J. 70, 1618–1627.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, J., Deyhima, A., Krueger, S., and Greguricka, S. K. (2005) LORES: Low resolution shape program for the calculation of small angle scattering profiles for biological macromolecules in solution. Comp. Phys. Commun. 170, 186–204.

    Article  CAS  Google Scholar 

  20. Gruenewald, B., Stankowski, S., and Blume A. (1979) Curvature influence on the cooperativity and the phase transition enthalpy of lecithin vesicles. FEBS Lett. 102, 227–229.

    Article  CAS  PubMed  Google Scholar 

  21. Brumm, T., Jørgensen, K., Mouritsen, O. G., and Bayerl, T. M. (1996) The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys. J. 70, 1373–1379.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, J., Buboltz, J. T., and Feigenson, G. W. (1999) Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 1417, 89–100.

    Article  CAS  PubMed  Google Scholar 

  23. Shaikh, S. R., Cherezov, V., Caffrey, M., et al. (2006) J. Am. Chem. Soc. 128, 5375–5383.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pencer, J., Mills, T.T., Kucerka, N., Nieh, MP., Katsaras, J. (2007). Small-Angle Neutron Scattering to Detect Rafts and Lipid Domains. In: McIntosh, T.J. (eds) Lipid Rafts. Methods in Molecular Biology, vol 398. Humana Press. https://doi.org/10.1007/978-1-59745-513-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-513-8_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-729-7

  • Online ISBN: 978-1-59745-513-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics