Skip to main content

Identification of Motor Protein Cargo by Yeast 2-Hybrid and Affinity Approaches

  • Protocol
Molecular Motors

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 392))

Abstract

Identification of the molecular composition of the cargo transported by individual kinesin motors is critical to an understanding of both motor function and regulation of the proper intracellular placement of numerous cellular components including proteins, RNA, and organelles. In this chapter, we describe methods to identify the motor tail sequences responsible for cargo binding by expression of green fluorescent protein (GFP)-motor tail fusion proteins in mammalian cells. In addition, we detail two complementary approaches to identify specific proteins associated with these targeting sequences: a yeast 2-hybrid screen and affinity chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barton, N.R. and Goldstein, L.S. (1996) Going mobile: microtubule motors and chromosome segregation. Proc. Natl. Acad. Sci. USA 93(5), 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  2. Hirokawa, N. and Takemura, R. (2004) Kinesin superfamily proteins and their various functions and dynamics. Exp. Cell Res. 301(1), 50–59.

    Article  CAS  PubMed  Google Scholar 

  3. Kull, F.J. (2000) Motor proteins of the kinesin superfamily: structure and mechanism. Essays Biochem. 35, 61–73.

    CAS  PubMed  Google Scholar 

  4. Wozniak, M.J., Milner, R., and Allan, V. (2004) N-terminal kinesins: many and various. Traffic 5(6), 400–410.

    Article  CAS  PubMed  Google Scholar 

  5. Ems-McClung, S.C., Zheng, Y., and Walczak, C.E. (2004) Importin alpha/beta and RAN-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15(1), 46–57.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. and Sperry, A.O. (2004) Comparative analysis of two C-terminal kinesin motor proteins: KIFC1 and KIFC5A. Cell Motil. Cytoskelet. 58(4), 213–230.

    Article  CAS  Google Scholar 

  7. Macho, B., Brancorsini, S., Fimia, G.M., Setou, M., Hirokawa, N., and Sassone-Corsi, P. (2002) CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298(5602), 2388–2390.

    Article  CAS  PubMed  Google Scholar 

  8. Nakagawa, T., Setou, M., Seog, D., Ogasawara, K., Dohmae, N., Takio, K., and Hirokawa, N. (2000) A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 103(4), 569–581.

    Article  CAS  PubMed  Google Scholar 

  9. Setou, M., Nakagawa, T., Seog, D.H., and Hirokawa, N. (2000) Kinesin superfamily motor protein KIF17 and Mlin-10 in NMDA receptor-containing vesicle transport. Science 288(5472), 1796–1802.

    Article  CAS  PubMed  Google Scholar 

  10. Bowman, A.B., Kamal, A., Ritchings, B.W., Philip, A.V., McGrail, M., Gindhart, J.G., and Goldstein, L.S. (2000) Kinesin-dependent axonal transport is mediated by the Sunday Driver (Syd) protein. Cell 103(4), 583–594.

    Article  CAS  PubMed  Google Scholar 

  11. Konecna, A., Frischknecht, R.J., Kinter, A., Ludwig, M., Steuble, V., Meskenaite, M., Indermuhle, M., Engel, C., Cen, J.-M., Mateos, P.S., and Sonderegger, P. (2006) Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol. Biol. Cell 17(8), 3651–3663.

    Article  CAS  PubMed  Google Scholar 

  12. Verhey, K.J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B.J., Rapoport, T.A., and Margolis, B. (2001) Cargo of kinesin identified as Jip scaffolding proteins and associated signaling molecules. J. Cell Biol. 152(5), 959–970.

    Article  CAS  PubMed  Google Scholar 

  13. Marszalek, J.R. and Goldstein, L.S. (2000) Understanding the functions of kinesin-II. Biochim. Biophys. Acta 1496(1), 142–150.

    Article  CAS  PubMed  Google Scholar 

  14. McDonald, H.B. and Goldstein, L.S. (1990) Identification and characterization of a gene encoding a kinesin-like protein in Drosophila. Cell 61(6), 991–1000.

    Article  CAS  Google Scholar 

  15. Hatsumi, M. and Endow, S.A. (1992) Mutants of the microtubule motor protein, nonclaret disjunctional, affect spindle structure and chromosome movement in meiosis and mitosis. J. Cell Sci. 101(Pt. 3), 547–559.

    PubMed  Google Scholar 

  16. Walczak, C.E., Verma, S., and Mitchison, T.J. (1997) Xctk2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J. Cell Biol. 136(4), 859–870.

    Article  CAS  PubMed  Google Scholar 

  17. Saito, N., Okada, Y., Noda, Y., Kinoshita, Y., Kondo, S., and Hirokawa, N. (1997) KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron 18(3), 425–438.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, W.-X. and Sperry, A.O. (2003) The C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol. Reprod. 69, 1719–1729.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, W.-X., Jefferson, H., and Sperry, A.O. (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol. Reprod. 74(4), 684–690.

    Article  CAS  PubMed  Google Scholar 

  20. Christodoulou, A., Lederer, C.W., Surrey, T., Vernos, I., and Santama, N. (2006) Motor protein KIFC5A interacts with NUBP1 and NUBP2, and is implicated in the regulation of centrosome duplication. J. Cell Sci. 119 (Pt. 10), 2035–2047.

    Article  CAS  PubMed  Google Scholar 

  21. Ausubel, F.M. (1987) Current Protocols in Molecular Biology. Greene/Wiley, New York.

    Google Scholar 

  22. Guthrie, C., and Fink, G.R. (1991) Guide to Yeast Genetics and Molecular and Cell Biology. Academic Press, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, Y., Wang, R., Jefferson, H., Sperry, A.O. (2007). Identification of Motor Protein Cargo by Yeast 2-Hybrid and Affinity Approaches. In: Sperry, A.O. (eds) Molecular Motors. Methods in Molecular Biology™, vol 392. Humana Press. https://doi.org/10.1007/978-1-59745-490-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-490-2_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-665-8

  • Online ISBN: 978-1-59745-490-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics