Skip to main content

Connexins in the Inner Ear

  • Chapter
Connexins

Abstract

Intercellular communication via gap junctions is crucial for auditory function. This has been emphasized by the findings that mutations in certain connexin genes, in particular GJB2 and GJB6 (encoding CX26 and CX30), cause sensorineural deafness. Cx26 and Cx30 proteins are widely expressed in the epithelial and connective tissues of the cochlea and vestibular system, where they likely form heteromeric gap junction channels. Despite the study of mutant channels and of mouse models for both recessive and dominant autosomal deafness, it is still unclear why gap junctions are essential for auditory function and why Cx26 and Cx30 cannot compensate for loss of each other. It is generally thought that gap junctions play a role in the maintenance of ionic and metabolic homeostasis in the inner ear. Recent studies highlight the possible involvement of gap junctions in intercellular signaling via second messengers between the nonsensory cells. This chapter summarizes current knowledge about the molecular and functional properties of inner ear gap junctions and the inner ear pathologies associated with connexin mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006;576:11–21.

    Article  CAS  PubMed  Google Scholar 

  2. Wangemann P. K+ cycling and the endocochlear potential. Hear Res. 2002;165:1–9.

    Article  CAS  PubMed  Google Scholar 

  3. Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals J Comp Neurol. 2003;467:207–31.

    Article  PubMed  Google Scholar 

  4. Zhao HB, Kikuchi T, Ngezahayo A, White TW. Gap junctions and cochlear homeostasis. J Membr Biol. 2006;209:177–86.

    Article  CAS  PubMed  Google Scholar 

  5. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC. Gap junction systems in the mammalian cochlea. Brain Res. 2000;32:163–6.

    Article  CAS  Google Scholar 

  6. Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol. 1995;191:101–18.

    Article  CAS  PubMed  Google Scholar 

  7. Kikuchi T, Adams JC, Paul DL, Kimura RS. Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis. Acta Otolaryngol. 1994;114:520–8.

    Article  CAS  PubMed  Google Scholar 

  8. Jahnke K. The fine structure of freeze-fractured intercellular junctions in the guinea pig inner ear. Acta Otolaryngol Suppl. 1975;336:1–40.

    CAS  PubMed  Google Scholar 

  9. Oesterle EC, Dallos P. Intracellular recordings from supporting cells in the guinea pig cochlea: DC potentials. J Neurophysiol. 1990;64:617–36.

    CAS  PubMed  Google Scholar 

  10. Santos-Sacchi J, Dallos P. Intercellular communication in the supporting cells of the organ of Corti. Hear Res. 1983;9:317–26.

    Article  CAS  PubMed  Google Scholar 

  11. Jagger DJ, Forge A. Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci. 2006;26:1260–8.

    Article  CAS  PubMed  Google Scholar 

  12. Nickel R, Becker D, Forge A. Molecular and functional characterization of gap junctions in the avian inner ear. J Neurosci. 2006;26:6190–9.

    Article  CAS  PubMed  Google Scholar 

  13. Reale E, Luciano L, Franke K, Pannese E, Wermbter G, Iurato S. Intercellular junctions in the vascular stria and spiral ligament. J Ultrastruct Res. 1975;53:284–97.

    Article  CAS  PubMed  Google Scholar 

  14. Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X. Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol. 2005;288:C613–23.

    Article  CAS  Google Scholar 

  15. Ahmad S, Chen S, Sun J, Lin X. Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun. 2003;307:362–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lautermann J, Ten Cate WJ, Altenhoff P, Grümmer R, Traub O, Frank H-G, Jahnke K, Winterhager E. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 1998;294:415–20.

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Bigas N, Arbones ML, Estivill X, Simonneau L. Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea. Mech Dev. 2002;119 Suppl 1:S111–5.

    Article  PubMed  Google Scholar 

  18. Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T. Expression of connexin 31 in the developing mouse cochlea. Neuroreport. 2000;11:2449–53.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki T, Takamatsu T, Oyamada M. Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. J Histochem Cytochem. 2003;51:903–12.

    CAS  PubMed  Google Scholar 

  20. Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C. Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res. 2004;316:15–22.

    Article  CAS  PubMed  Google Scholar 

  21. Eiberger J, Kibschull M, Strenzke N, Schober A, Büssow H, Wessig C, Djahed S, Reucher H, Koch DA, Lautermann J, Moser T, Winterhager E, Willecke K. Expression pattern and functional characterization of connexin29 in transgenic mice. Glia 2006;53:601–11.

    Article  PubMed  Google Scholar 

  22. Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X. Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci. 2006;26:1991–9.

    Article  CAS  PubMed  Google Scholar 

  23. Heller S, Sheane CA, Javed Z, Hudspeth AJ. Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proc Natl Acad Sci USA. 1998;95:11400–5.

    Google Scholar 

  24. Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc. 2000;33:51–6.

    Article  CAS  PubMed  Google Scholar 

  25. Wangemann P. K+ cycling and its regulation in the cochlea and the vestibular labyrinth. Audiol Neurootol. 2002;7:199–205.

    Article  CAS  PubMed  Google Scholar 

  26. Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129:1045–56.

    Article  CAS  PubMed  Google Scholar 

  27. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol. 2002;12:1106–11.

    Article  CAS  PubMed  Google Scholar 

  28. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, So¨hl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Gen. 2003;12:13–21.

    Article  CAS  PubMed  Google Scholar 

  29. Manthey D, Banach K, Desplantez T, Lee CG, Kozak CA, Traub O, Weingart R, Willecke K. Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. J Membr Biol. 2001;181:137–48.

    CAS  PubMed  Google Scholar 

  30. Valiunas V, Manthey D, Vogel R, Willecke K, Weingart R. Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol. 1999;519:631–44.

    Article  CAS  PubMed  Google Scholar 

  31. Ninoyu O, Hommerich C, Morgenstern C. Endolymph formation in the inner ear of pigeons. ORL J Otorhinolaryngol Relat Spec. 1987;49:1–8.

    CAS  PubMed  Google Scholar 

  32. Wangemann P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res. 1995;90:149–57.

    Article  CAS  PubMed  Google Scholar 

  33. Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, Scherer SS. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol. 2007;293:C1032–48.

    Google Scholar 

  34. Dahl E, Manthey D, Chen Y, Schwarz HJ, Chang YS, Lalley PA, Nicholson BJ, Willecke K. Molecular cloning and functional expression of mouse connexin-30,a gap junction gene highly expressed in adult brain and skin. J Biol Chem. 1996;271:17903–10.

    Article  CAS  PubMed  Google Scholar 

  35. Beltramello M, Bicego M, Piazza V, Ciubotaru CD, Mammano F, D'Andrea P. Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem Biophys Res Commun. 2003;305:1024–33.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao HB. Directional rectification of gap junctional voltage-gating between Deiters cells in the inner ear of guinea pig. Neurosci Lett. 2000;296:105–8.

    Article  CAS  PubMed  Google Scholar 

  37. Blasits S, Maune S, Santos-Sacchi J. Nitric oxide uncouples gap junctions of supporting Deiters’ cells from Corti's organ. Pflügers Arch. 2000;440:710–2.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao HB, Santos-Sacchi J. Effect of membrane tension on gap junctional conductance of supporting cells in Corti's organ. J Genet Physiol. 1998;112:447–55.

    Article  CAS  Google Scholar 

  39. Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol. 2005;7:63–9.

    Article  CAS  PubMed  Google Scholar 

  40. Forge A, Marziano NK, Casalotti SO, Becker DL, Jagger D. The inner ear contains heteromeric channels composed of Cx26 and Cx30 and deafness-related mutations in Cx26 have a dominant-negative effect on Cx30. Cell Commun Adhes. 2003;10:341–6.

    CAS  PubMed  Google Scholar 

  41. Zhao HB, Yu N. Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol. 2006;499:506–18.

    Article  CAS  PubMed  Google Scholar 

  42. Ayad WA, Locke D, Koreen IV, Harris AL. Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J Biol Chem. 2006;281:16727–39.

    Article  CAS  PubMed  Google Scholar 

  43. He L, Ayad WA, Harris AL. Expression and functional analysis of deafness-associated heteromeric connexin channels. ASCB Meet Abstr. 2006;358.

    Google Scholar 

  44. Gale JE, Piazza V, Ciubotaru CD, Mammano F. A mechanism for sensing noise damage in the inner ear. Curr Biol. 2004;14:526–9.

    Google Scholar 

  45. Zhao HB, Yu N, Fleming CR. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA. 2005;102:18724–9.

    Google Scholar 

  46. Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C. Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA. 2007;104:6229–6234.

    Google Scholar 

  47. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM. Connexin 26 mutations in hereditary nonsyndromic sensorineural deafness. Nature 1997;387:80–3.

    Article  CAS  PubMed  Google Scholar 

  48. Grifa A, Wagner CA, D'Ambrosio L, Melchionda S, Bernardi F Lopez-Bigas N, Rabionet R, Arbones M, Della M, Estivill X, Zelante L, Lang F, Gasparini P. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet. 1999;23:16–8.

    CAS  PubMed  Google Scholar 

  49. Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX, Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, Xiao JY, Xie DH, Huang JZ. Mutations in the gene encoding gap junction protein β-3 associated with autosomal dominant hearing impairment. Nat Genet. 1998;20:370–3.

    Article  CAS  PubMed  Google Scholar 

  50. Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE. Mutations in GJA1 (connexin 43) are associated with nonsyndromic autosomal recessive deafness. Hum Mol Genet. 2001;10:2945–51.

    Article  CAS  PubMed  Google Scholar 

  51. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB Christian C, Hannibal MC, Jabs EW. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet. 2003;72:408–18.

    Article  CAS  PubMed  Google Scholar 

  52. Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X. Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med. 2002;8:205–12.

    Article  CAS  PubMed  Google Scholar 

  53. Kenneson A, Van Naarden Braun K, Boyle C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet Med. 2002;4:258–74.

    Article  CAS  PubMed  Google Scholar 

  54. Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F, Waligora J, Mueller-Malesinska M, Pollak A, Ploski R, Murgia A, Orzan E, Castorina P, Ambrosetti U, Nowakowska-Szyrwinska E, Bal J, Wiszniewski W, Janecke AR, Nekahm-Heis D, Seeman P, Bendova O, Kenna MA, Frangulov A, Rehm HL, Tekin M, Incesulu A, Dahl HH, du Sart D, Jenkins L, Lucas D, Bitner-Glindzicz M, Avraham KB, Brownstein Z, del Castillo I, Moreno F, Blin N, Pfister M, Sziklai I, Toth T, Kelley PM, Cohn ES, Van Maldergem L, Hilbert P, Roux AF, Mondain M, Hoefsloot LH, Cremers CW, Lopponen T, Lopponen H, Parving A, Gronskov K, Schrijver I, Roberson J, Gualandi F, Martini A, Lina-Granade G, Pallares-Ruiz N, Correia C, Fialho G, Cryns K, Hilgert N, Van de Heyning P, Nishimura CJ, Smith RJ, Van Camp G. GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet. 2005;77:945–57.

    Article  CAS  PubMed  Google Scholar 

  55. Thonnissen E, Rabionet R, Arbones ML, Estivill X, Willecke K, Ott T. Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet. 2002;111:190–7.

    Article  PubMed  Google Scholar 

  56. Oshima A, Doi T, Mitsuoka K, Maeda S, Fujiyoshi Y. Roles of Met-34, Cys-64, and Arg-75 in the assembly of human connexin 26. Implication for key amino acid residues for channel formation and function. J Biol Chem. 2003;278:1807–16.

    Article  CAS  PubMed  Google Scholar 

  57. D'Andrea P, Veronesi V, Bicego M, Melchionda S, Zelante L, Di Iorio E, Bruzzone R, Gasparini P. Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochem Biophys Res Commun. 2002;296:685–91.

    Article  PubMed  Google Scholar 

  58. Martin PE, Coleman SL, Casalotti SO, Forge A, Evans WH. Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum Mol Genet. 1999;8:2369–76.

    Article  CAS  PubMed  Google Scholar 

  59. Bicego M, Beltramello M, Melchionda S, Carella M, Piazza V, Zelante L, Bukauskas FF, Arslan E, Cama E, Pantano S, Bruzzone R, D’Andrea P, Mammano F. Pathogenetic role of the deafness-related M34T mutation of Cx26. Hum Mol Genet. 2006;15:2569–87.

    Article  CAS  PubMed  Google Scholar 

  60. Skerrett IM, Di WL, Kasperek EM, Kelsell DP, Nicholson BJ. Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T. FASEB J. 2004;18:860–2.

    CAS  PubMed  Google Scholar 

  61. Wang HL, Chang WT, Li AH, Wu CY, Chen MS, Huang PC. Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem. 2003;8:735–42.

    Article  Google Scholar 

  62. Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, Lin X. Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci USA. 2005;102:15201–6.

    Google Scholar 

  63. Xia CH, Cheung D, DeRosa AM, Chang B, Lo WK, White TW, Gong X. Knock-in of α3 connexin prevents severe cataracts caused by an α8 point mutation. J Cell Sci. 2006;119:2138–44.

    Article  PubMed  Google Scholar 

  64. Hülser DF, Rutz ML, Eckert R, Traub O. Functional rescue of defective mutant connexons by pairing with wildtype connexons. Pflügers Arch. 2001;441:521–8.

    Article  PubMed  Google Scholar 

  65. Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A. Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant-negative effect on connexin 30. Hum Mol Genet. 2003;12:805–12.

    Article  CAS  PubMed  Google Scholar 

  66. Feldmann D, Denoyelle F, Blons H, Lyonnet S, Loundon N, Rouillon I, Hadj-Rabia S, Petit C, Couderc R, Garabedian EN, Marlin S. The GJB2 mutation R75Q can cause nonsyndromic hearing loss DFNA3 or hereditary palmoplantar keratoderma with deafness. Am J Med Genet A. 2005;137:225–7.

    PubMed  Google Scholar 

  67. Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C. Connexin 26 gene linked to a dominant deafness. Nature 1998;393:319–20.

    Article  CAS  PubMed  Google Scholar 

  68. Piazza V, Beltramello M, Menniti M, Colao E, Malatesta P, Argento R, Chiarella G, Gallo LV, Catalano M, Perrotti N, Mammano F, Cassandro E. Functional analysis of R75Q mutation in the gene coding for Connexin 26 identified in a family with nonsyndromic hearing loss. Clin Genet. 2005;68:161–6.

    Article  CAS  PubMed  Google Scholar 

  69. Deng Y, Chen Y, Reuss L, Altenberg GA. Mutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels. Hear Res. 2006;220:87–94.

    Article  CAS  PubMed  Google Scholar 

  70. Chen Y, Deng Y, Bao X, Reuss L, Altenberg GA. Mechanism of the defect in gap-junctional communication by expression of a connexin 26 mutant associated with dominant deafness. FASEB J. 2005;19:1516–8.

    CAS  PubMed  Google Scholar 

  71. Thomas T, Telford D, Laird DW. Functional domain mapping and selective trans-dominant effects exhibited by Cx26 disease-causing mutations. J Biol Chem. 2004;279:19157–68.

    Article  CAS  PubMed  Google Scholar 

  72. Richard G, White TW, Smith LE, Bailey RA, Compton JG, Paul DL, Bale SJ. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet. 1998;103:393–9.

    Article  CAS  PubMed  Google Scholar 

  73. Maestrini E, Korge BP, Ocana-Sierra J, Calzolari E, Cambiaghi S, Scudder PM, Hovnanian A, Monaco AP, Munro CS. A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum Mol Genet. 1999;8:1237–43.

    Article  CAS  PubMed  Google Scholar 

  74. Richard G, Rouan F, Willoughby CE, Brown N, Chung P, Ryynanen M, Jabs EW, Bale SJ, DiGiovanna JJ, Uitto J, Russell L. Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet. 2002;70:1341–8.

    Article  CAS  PubMed  Google Scholar 

  75. Heathcote K, Syrris P, Carter ND, Patton MA. A connexin 26 mutation causes a syndrome of sensorineural hearing loss and palmoplantar hyperkeratosis (MIM 148350). J Med Genet. 2000;37:50–1.

    Article  CAS  PubMed  Google Scholar 

  76. Uyguner O, Tukel T, Baykal C, Eris H, Emiroglu M, Hafiz G, Ghanbari A, Baserer N, Yuksel-Apak M, Wollnik B. The novel R75Q mutation in the GJB2 gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family. Clin Genet. 2002;62:306–9.

    Article  CAS  PubMed  Google Scholar 

  77. del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med. 2002;346:243–9.

    Article  CAS  PubMed  Google Scholar 

  78. Common JE, Bitner-Glindzicz M, O'Toole EA, Barnes MR, Jenkins L, Forge A, Kelsell DP. Specific loss of connexin 26 expression in ductal sweat gland epithelium associated with the deletion mutation del(GJB6-D13S1830). Clin Exp Dermatol. 2005;30:688–93.

    Article  CAS  PubMed  Google Scholar 

  79. Common JE, Di WL, Davies D, Galvin H, Leigh IM, O’Toole EA, Kelsell DP. Cellular mechanisms of mutant connexins in skin disease and hearing loss. Cell Comm Adhes. 2003;10:347–51.

    CAS  Google Scholar 

  80. Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE. Mutations in connexin31 underlie recessive as well as dominant nonsyndromic hearing loss. Hum Mol Genet. 2000;9:63–7.

    Article  CAS  PubMed  Google Scholar 

  81. He LQ, Liu Y, Cai F, Tan ZP, Pan Q, Liang DS, Long ZG, Wu LQ, Huang LQ, Dai HP, Xia K, Xia JH, Zhang ZH. Intracellular distribution, assembly and effect of disease-associated connexin 31 mutants in HeLa cells. Acta Biochim Biophys Sin. 2005;37:547–54.

    Article  CAS  PubMed  Google Scholar 

  82. Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, Kojima K, Ichinohe A, Suzuki Y, Aoki Y, Kobayashi T, Matsubara Y. Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and nonsyndromic deafness. Hum Mol Genet. 2003;12:995–1004.

    Article  CAS  PubMed  Google Scholar 

  83. Plum A, Winterhager E, Pesch J, Hallas G, Rosentreter B, Traub O, Herberhold C, Willecke K. Connexin31-deficiency in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev Biol. 2001;231:334–47.

    Article  CAS  PubMed  Google Scholar 

  84. Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hülser DF, Willecke K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol. 1995;129:805–17.

    Article  CAS  PubMed  Google Scholar 

  85. Abrams CK, Freidin MM, Verselis VK, Bargiello TA, Kelsell DP, Richard G, Bennett MV, Bukauskas FF. Properties of human connexin 31, which is implicated in hereditary dermatological disease and deafness. Proc Nat Acad Sci USA. 2006;103:5213–8.

    Google Scholar 

  86. Ahmad S, Tang W, Chang Q, Qu Y, Hibshman J, Li Y, So¨hl G, Willecke K, Chen P, Lin X. Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Nat Acad Sci USA. 2007;104:1337–41.

    Google Scholar 

Download references

Acknowledgments

The authors are supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Deafness Research UK, The Royal National Institute for Deaf People (RNID), and the Royal Society. We apologize to colleagues whose work could not be cited owing to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Forge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nickel, R., Forge, A., Jagger, D. (2009). Connexins in the Inner Ear. In: Harris, A.L., Locke, D. (eds) Connexins. Humana Press. https://doi.org/10.1007/978-1-59745-489-6_20

Download citation

Publish with us

Policies and ethics