Skip to main content

A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

Nanocoding

  • Protocol
  • First Online:
Micro and Nano Technologies in Bioanalysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 544))

Summary

Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels, creating molecular barcodes, which are efficiently read using fluorescence resonance energy transfer techniques for minimizing noise from unincorporated labels. As such, our integrative approach for the realization of genomic analysis through nanoconfinement, named nanocoding, was demonstrated through the barcoding and mapping of bacterial artificial chromosomal molecules, thereby providing the basis for a high-throughput platform competent for whole genome investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz, D. C., Li, X., Hernandez, L. I., Ramnarain, S. P., Huff, E. J., & Wang, Y. K. (1993). Science 262, 110–114

    Article  CAS  Google Scholar 

  2. Dimalanta, E. T., Lim, A., Runnheim, R., Lamers, C., Churas, C., Forrest, D. K., de Pablo, J. J., Graham, M. D., Coppersmith, S. N., Goldstein, S., et al (2004). Anal. Chem. 76, 5293–5301

    Article  CAS  Google Scholar 

  3. Zhou, S., Herschleb, J., & Schwartz, D. C. (2007). in New Methods for DNA Sequencing ed. Mitchelson, K. R. (Elsevier Scientific Publishers, Amsterdam, Netherland), pp. 265–300

    Google Scholar 

  4. Cai, W., Aburatani, H., Stanton, V. P., Jr., Housman, D. E., Wang, Y. K., & Schwartz, D. C. (1995). Proc. Natl. Acad. Sci. U.S.A. 92, 5164–5168

    Article  CAS  Google Scholar 

  5. Meng, X., Benson, K., Chada, K., Huff, E. J., & Schwartz, D. C. (1995). Nat. Genet. 9, 432–438

    Article  CAS  Google Scholar 

  6. Valouev, A., Schwartz, D. C., Zhou, S., & Waterman, M. S. (2006). Proc. Natl. Acad. Sci. U. S. A. 103, 15770–15775

    Article  CAS  Google Scholar 

  7. Valouev, A., Zhang, Y., Waterman, M. S., & Waterman, M. S. (2006). Bioinformatics 22, 1217–1224

    Article  CAS  Google Scholar 

  8. Lin, J., Qi, R., Aston, C., Jing, J., Anantharaman, T. S., Mishra, B., White, O., Daly, M. J., Minton, K. W., Venter, J. C., et al (1999). Science 285, 1558–1562

    Article  CAS  Google Scholar 

  9. Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., Zhou, S. G., Allen, A. E., Apt, K. E., Bechner, M., et al (2004). Science 306, 79–86

    Article  CAS  Google Scholar 

  10. Lai, Z., Jing, J., Aston, C., Clarke, V., Apodaca, J., Dimalanta, E. T., Carucci, D. J., Gardner, M. J., Mishra, B., Anantharaman, T. S., et al (1999). Nat. Genet. 23, 309–313

    Article  CAS  Google Scholar 

  11. Perna, N. T., Plunkett, G., III, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A., et al (2001). Nature 409, 529–533

    Article  CAS  Google Scholar 

  12. Zhou, S., Kile, A., Bechner, M., Place, M., Kvikstad, E., Deng, W., Wei, J., Severin, J., Runnheim, R., Churas, C., et al (2004). J. Bacteriol. 186, 7773–7782

    Article  CAS  Google Scholar 

  13. Cao, H., Yu, Z. N., Wang, J., Tegenfeldt, J. O., Austin, R. H., Chen, E., Wu, W., & Chou, S. Y. (2002). Appl. Phys. Lett. 81, 174–176

    Article  CAS  Google Scholar 

  14. Reisner, W., Morton, K. J., Riehn, R., Wang, Y. M., Yu, Z. N., Rosen, M., Sturm, J. C., Chou, S. Y., Frey, E., & Austin, R. H. (2005). Phys. Rev. Lett. 94, 196101

    Article  Google Scholar 

  15. Tegenfeldt, J. O., Prinz, C., Cao, H., Chou, S., Reisner, W. W., Riehn, R., Wang, Y. M., Cox, E. C., Sturm, J. C., Silberzan, P., et al (2004). Proc. Natl. Acad. Sci. U.S.A. 101, 10979–10983

    Article  CAS  Google Scholar 

  16. Jo, K., Dhingra, D. M., Odijk, T., de Pablo, J. J., Graham, M. D., Runnheim, R., Forrest, D., & Schwartz, D. C. (2007). Proc. Natl. Acad. Sci. U.S.A. 104, 2673–2678

    Article  CAS  Google Scholar 

  17. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., & Whitesides, G. M. (1998). Anal. Chem. 70, 4974–4984

    Article  CAS  Google Scholar 

  18. Zhou, S., Deng, W., Anantharaman, T. S., Lim, A., Dimalanta, E. T., Wang, J., Wu, T., Chunhong, T., Creighton, R., Kile, A., et al (2002). Appl. Environ. Microbiol. 68, 6321–6331

    Article  CAS  Google Scholar 

  19. Reed, J., Singer, E., Kresbach, G., & Schwartz, D. C. (1998). Anal. Biochem. 259, 80–88

    Article  CAS  Google Scholar 

  20. Effenhauser, C. S., Bruin, G. J. M., Paulus, A., & Ehrat, M. (1997). Anal. Chem. 69, 3451–3457

    Article  CAS  Google Scholar 

  21. Markstrom, M., Cole, K. D., & Akerman, B. (2002). J. Phys. Chem. B 106, 2349–2356

    Article  Google Scholar 

  22. Eriksson, M., Karlsson, H. J., Westman, G., & Akerman, B. (2003). Nucleic Acids Res. 31, 6235–6242

    Article  CAS  Google Scholar 

  23. Heiter, D. F., Lunnen, K. D., & Wilson, G. G. (2005). J. Mol. Biol. 348, 631–640

    Article  CAS  Google Scholar 

  24. Xu, S. Y., Zhu, Z., Zhang, P., Chan, S. H., Samuelson, J. C., Xiao, J., Ingalls, D., & Wilson, G. G. (2007). Nucleic Acids Res. 35(14), 4608–4618

    Article  CAS  Google Scholar 

  25. Xiao, M., Phong, A., Ha, C., Chan, T. F., Cai, D., Leung, L., Wan, E., Kistler, A. L., DeRisi, J. L., Selvin, P. R., et al (2007). Nucleic Acids Res. 35, e16

    Article  Google Scholar 

  26. Jing, J., Reed, J., Huang, J., Hu, X., Clarke, V., Edington, J., Housman, D., Anantharaman, T. S., Huff, E. J., Mishra, B., et al (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 8046–8051

    Article  CAS  Google Scholar 

  27. Cai, W., Aburatani, H., Stanton, V. P., Jr., Housman, D. E., Wang, Y. K., & Schwartz, D. C. (1995). Proc. Natl. Acad. Sci. U.S.A. 92, 5164–5168

    Article  CAS  Google Scholar 

  28. Cai, W., Jing, J., Irvin, B., Ohler, L., Rose, E., Shizuya, H., Kim, U. J., Simon, M., Anantharaman, T., Mishra, B., et al (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 3390–3395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Dalia M. Dhingra for assisting in the development DNA barcoding, Prof. Theo Odijk for his theory development of DNA elongation within nanoslits, Prof. Juan J. de Pablo and Prof. Michael D. Graham for their advice, and Dr. Guy Plunkett III for bacterial artificial chromosomes and their sequence data. This work was supported by National Institutes of Health Grant 5R01HG000225 and National Science Foundation Grant NSEC DMR-0425880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jo, K., Schramm, T.M., Schwartz, D.C. (2009). A Single-Molecule Barcoding System using Nanoslits for DNA Analysis. In: Foote, R., Lee, J. (eds) Micro and Nano Technologies in Bioanalysis. Methods in Molecular Biology™, vol 544. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-483-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-483-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-40-4

  • Online ISBN: 978-1-59745-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics