Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology™ ((MIPT))

Summary

In recent years, proteomics has driven developments of mass spectrometric approaches. Simultaneously, the research community has regained a major interest in lipids, with mass spectrometry unambiguously facilitating the development of lipidomics. Quantitative determination of molecular lipids is essential for addressing the role of lipids in cellular membranes and in metabolic dysfunctions, potentially leading to a disease state. Lipidomics has therefore evoked great interest in academic research laboratories and in the pharmaceutical industry, particularly in biomarker and drug discovery. A high-throughput oriented lipidomics methodology enabling quantitative analysis of the glycerophospholipidome in an automated fashion is described in this chapter. The methodology explicitly shows enormous potential and promises to play a key role in cell biology, molecular medicine, and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fahy E, Subramaniam S, Brown HA, et al. A comprehensive classification system for lipids. J Lipid Res 2005;46(5):839–862.

    Article  CAS  PubMed  Google Scholar 

  2. Simons K, Vaz WLC. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 2004;33(1):269–295.

    Article  CAS  PubMed  Google Scholar 

  3. Pan DA, Hulbert AJ, Storlien LH. Dietary fats, membrane phospholipids and obesity. J Nutr ;124(9):1555–1565.

    Google Scholar 

  4. Hulbert AJ, Turner N, Storlien LH, Else PL. Dietary fats and membrane function: implications for metabolism and disease. Biol Rev Cambridge Philos Soc 2005;80(1):155–169.

    Article  CAS  PubMed  Google Scholar 

  5. Lichtenstein AH, Schwab US. Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000;150(2):243.

    Article  Google Scholar 

  6. Busch AK, Gurisik E, Cordery DV, et al. Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic {beta}-cells from lipoapoptosis. Diabetes 2005;54(10):2917–2924.

    Article  CAS  PubMed  Google Scholar 

  7. Gutierrez-Juarez R, Pocai A, Mulas C, et al. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest 2006;116(6):1686–1695.

    Article  CAS  PubMed  Google Scholar 

  8. Sampath H, Ntambi JM. Stearoyl-coenzyme A desaturase 1, sterol regulatory element binding protein-1c and peroxisome proliferator-activated receptor-alpha: independent and interactive roles in the regulation of lipid metabolism. Curr Opin Clin Nutr Metabol Care 2006;9(2):84–88.

    Article  CAS  Google Scholar 

  9. Min Y, Lowy C, Ghebremeskel K, Thomas B, Bitsanis D, Crawford MA. Fetal erythrocyte membrane lipids modification: preliminary observation of an early sign of compromised insulin sensitivity in offspring of gestational diabetic women. Diabetic Med 2005;22(7):914–920.

    Article  CAS  PubMed  Google Scholar 

  10. Linden D, William-Olsson L, Ahnmark A, et al. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB J 2006;20(3):434–443.

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Xu G, Hong Q, et al. Discrimination of type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B 2004;813(1–2):58.

    Google Scholar 

  12. Tsimikas S, Kiechl S, Willeit J, et al. Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the Bruneck Study. J Am Coll Cardiol 2006;47(11):2228.

    Article  Google Scholar 

  13. Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA 1994;91(22):10635–10639.

    Google Scholar 

  14. Han X, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom 1995;6(12):1210.

    Article  Google Scholar 

  15. Kerwin J, Tuininga A, Ericsson L. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 1994;35(6):1102–1114.

    CAS  PubMed  Google Scholar 

  16. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 1997;94(6):2339–2344.

    Google Scholar 

  17. Wilm M, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem 1996;68(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ekroos K, Chernushevich IV, Simons K, Shevchenko A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer. Anal Chem 2002;74(5):941–949.

    Article  CAS  PubMed  Google Scholar 

  19. Ejsing CS, Duchoslav E, Sampaio J, et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 2006;78(17):6202–6214.

    Article  CAS  PubMed  Google Scholar 

  20. Tangirala R, Rubin E, Palinski W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 1995;36(11):2320–2328.

    CAS  PubMed  Google Scholar 

  21. Williams T, Chambers J, Roberts L, Henderson R, Overton J. Diet-induced obesity and cardiovascular regulation in C57BL/6J mice. Clin Exp Pharmacol Physiol 2003;30(10):769–778.

    Article  CAS  PubMed  Google Scholar 

  22. Leitinger N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 2003;14(5):421–430.

    Article  CAS  PubMed  Google Scholar 

  23. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res 2003;44(11):2181–2192.

    Article  CAS  PubMed  Google Scholar 

  24. Ekroos K, Shevchenko A. Simple two-point calibration of hybrid quadrupole time-of-flight instruments using a synthetic lipid standard. Rapid Commun Mass Spectrom 2002;16(12):1254–1255.

    Article  CAS  PubMed  Google Scholar 

  25. Chernushevich IV. Duty cycle improvement for a quadrupole-time-of-flight mass spectrometer and its use for precursor ion scans. Eur J Mass Spectrom 2000;6:471–479.

    Article  CAS  Google Scholar 

  26. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. Multi- and Megavariate Data Analysis; Principles and Applications. Umetrics AB, Umeå, Sweden 2001, ISBN 91-973730-1-X.

    Google Scholar 

  27. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226(1):497–509.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ekroos, K. (2008). Unraveling Glycerophospholipidomes by Lipidomics. In: Wang, F. (eds) Biomarker Methods in Drug Discovery and Development. Methods in Pharmacology and Toxicology™. Humana Press. https://doi.org/10.1007/978-1-59745-463-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-463-6_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-23-7

  • Online ISBN: 978-1-59745-463-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics