Skip to main content

Epitope Mapping Using Randomly Generated Peptide Libraries

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 524))

Summary

Characterizing the immune response towards a pathogen is of high interest for vaccine development and diagnosis. However, the characterization of disease-related antigen–antibody interactions is of enormous complexity. Here, we present a method comprising binding studies of serum antibody pools to synthetic random peptide libraries, and data analysis of the resulting binding patterns. The analysis can be applied to classify and predict different groups of individuals and to detect the peptides which best discriminate the investigated groups. As an example, the analysis of antibody repertoire binding patterns of different mice strains and of mice infected with helminth parasites is shown. Due to the design of the library and the sophisticated analysis, the method is able to classify and predict the different mice strains and the infection with very high accuracy and with a very small number of peptides, illustrating the potential of random library screenings in determining molecular markers for diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., and Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55, 188–206.

    Article  PubMed  CAS  Google Scholar 

  2. Frank, R. (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J. Immunol. Methods 267, 13–26.

    Article  PubMed  CAS  Google Scholar 

  3. Geysen, H. M., Meloen, R. H. , and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U S A 81, 3998–4002.

    Article  PubMed  CAS  Google Scholar 

  4. Weiser, A. A., Or-Guil, M., Tapia, V., Leichsenring, A., Schuchhardt, J., Frommel, C. , and Volkmer-Engert, R. (2005) SPOT synthesis: reliability of array-based measurement of peptide binding affinity. Anal. Biochem. 342, 300–311.

    Article  PubMed  Google Scholar 

  5. Wenschuh, H., Gausepohl, H., Germeroth, L., Ulbricht, M., Matuschewski, H., Kramer, A., Volkmer-Engert, R., Heine, N., Ast, T., Scharn, D., and Schneider-Mergener, J. (2000)in Combinatorial Chemistry: A Practical Approach (Fenniri, H.), Oxford University Press, Oxford, UK, pp. 95–116.

    Google Scholar 

  6. Reineke, U., Volkmer-Engert, R. , and Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotech. 12, 59–64.

    Article  PubMed  CAS  Google Scholar 

  7. Tapia, V., Bongartz, J., Schutkowski, M., Bruni, N., Weiser, A., Ay, B., Volkmer, R. , and Or-Guil, M. (2007) Affinity profiling using the peptide microarray technology: a case study. Anal. Biochem. 363, 108–118.

    Article  PubMed  CAS  Google Scholar 

  8. Reimer, U., Reineke, U., and Schneider-Mergener, J. (2002) Peptide arrays: from macro to micro. Curr. Opin. Biotech. 13, 315–320.

    Article  PubMed  CAS  Google Scholar 

  9. Schutkowski, M., Reimer, U., Panse, S., Dong, L., Lizcano, J. M., Alessi, D. R. , and Schneider-Mergener, J. (2004) High-Content Peptide Microarrays for Deciphering Kinase Specificity and Biology. Angew. Chem. 116, 2725–2728.

    Article  Google Scholar 

  10. Jones, R. B., Gordus, A., Krall, J. A., and MacBeath, G. (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174.

    Article  PubMed  CAS  Google Scholar 

  11. Quintana, F. J., Hagedorn, P. H., Elizur, G., Merbl, Y., Domany, E. , and Cohen, I. R. (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc. Natl. Acad. Sci. U S A 101(Suppl 2), 14615–14621.

    Article  PubMed  CAS  Google Scholar 

  12. 12.Frank, S. A. (ed.) (2002) Immunology and Evolution of Infectious Disease. Princeton University Press, Princeton, NJ.

    Google Scholar 

  13. 13.Reineke, U., Ivascu, C., Schlief, M., Landgraf, C., Gericke, S., Zahn, G., Herzel, H., Volkmer-Engert, R. , and Schneider-Mergener, J. (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J. Immunol. Methods 267, 37–51.

    Article  PubMed  CAS  Google Scholar 

  14. Nobrega, A., Grandien, A., Haury, M., Hecker, L., Malanchere, E. , and Coutinho, A. (1998) Functional diversity and clonal frequencies of reactivity in the available antibody repertoire. Eur. J. Immunol. 28, 1204–1215.

    Article  PubMed  CAS  Google Scholar 

  15. Haury, M., Grandien, A., Sundblad, A., Coutinho, A. , and Nobrega, A. (1994) Global analysis of antibody repertoires. 1. An immunoblot method for the quantitative screening of a large number of reactivities. Scand. J. Immunol. 39, 79–87.

    Article  PubMed  CAS  Google Scholar 

  16. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–90051–07–0, URL http://www.R-project.org.

  17. Jackson, J. E. (ed.) (1991) A User’s Guide to Principal Components. Wiley, Hoboken, NJ.

    Google Scholar 

  18. Ripley, B.D. (ed.) (1006) Pattern Recognition and Neural Networks. Cambridge University Press, New York, NY.

    Google Scholar 

  19. Hochreiter, S. and Obermayer, K. (2006) Support vector machines for dyadic data. Neural Comput. 18, 1472–1510.

    Article  PubMed  Google Scholar 

  20. Venables, W. N. and Ripley, B. D. (eds.) (2002) Modern Applied Statistics with S. Springer, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Or-Guil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bongartz, J., Bruni, N., Or-Guil, M. (2009). Epitope Mapping Using Randomly Generated Peptide Libraries. In: Schutkowski, M., Reineke, U. (eds) Epitope Mapping Protocols. Methods in Molecular Biology™, vol 524. Humana Press. https://doi.org/10.1007/978-1-59745-450-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-450-6_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-17-6

  • Online ISBN: 978-1-59745-450-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics