Skip to main content

In Vitro Expansion of Tissue Cells by Conditional Proliferation

  • Protocol
Tissue Engineering

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Cell therapies rely on the implantation of well-characterized functional cells with defined properties. Often, the cells of interest do not proliferate in vitro and thus cannot be expanded to the amount needed for characterization, purification, manipulation, or cloning. Here, we describe a method that allows the reversible expansion of cells by the introduction of a proliferator gene controlled by a regulatable expression module. The module is transferred by DNA transfer or by lentiviral transduction. The addition of a clinically accepted regulator [Doxycycline (Dox)] induces proliferator expression and expansion of the cells ad infinitum. Removal of the regulator eliminates the effect of the proliferator and leaves the cells in a non-proliferating status. The method has been applied to different mouse and human tissues. This chapter describes the method for the well-examined example of mouse embryonic fibroblast (MEF) expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W. S., and Bernstein, I. D. (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278–1281.

    Article  CAS  Google Scholar 

  2. Jat, P. S. and Sharp, P. A. (1989) Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell Biol. 9, 1672–1681.

    CAS  Google Scholar 

  3. Jat, P. S., Noble, M. D., Ataliotis, P., Tanaka, Y., Yannoutsos, N., Larsen, L., and Kioussis, D. (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. U. S. A. 88, 5096–5100.

    Article  CAS  Google Scholar 

  4. May, T., Wirth, D., Hauser, H., and Mueller, P. P. (2005) Transcriptionally regulated immortalization overcomes side effects of temperature-sensitive SV40 large T antigen. Biochem. Biophys. Res. Commun. 327, 734–741.

    Article  CAS  Google Scholar 

  5. Westerman, K. A. and Leboulch, P. (1996) Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc. Natl. Acad. Sci. U. S. A. 93, 8971–8976.

    Article  CAS  Google Scholar 

  6. Rybkin, I. I., Markham, D. W., Yan, Z., Bassel-Duby, R., Williams, R. S., and Olson, E. N. (2003) Conditional expression of SV40 T-antigen in mouse cardiomyocytes facilitates an inducible switch from proliferation to differentiation. J. Biol. Chem. 278, 15927–15934.

    Article  CAS  Google Scholar 

  7. Berghella, L., De Angelis, L., Coletta, M., Berarducci, B., Sonnino, C., Salvatori, G., Anthonissen, C., Cooper, R., Butler-Browne, G. S., Mouly, V., Ferrari, G., Mavilio, F., and Cossu, G. (1999) Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally transferred oncogene. Hum. Gene Ther. 10, 1607–1617.

    Article  CAS  Google Scholar 

  8. Cai, J., Ito, M., Westerman, K. A., Kobayashi, N., Leboulch, P., and Fox, I. J. (2000) Construction of a non-tumorigenic rat hepatocyte cell line for transplantation: reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen. J. Hepatol. 33, 701–708.

    Article  CAS  Google Scholar 

  9. Narushima, M., Kobayashi, N., Okitsu, T., Tanaka, Y., Li, S. A., Chen, Y., Miki, A., Tanaka, K., Nakaji, S., Takei, K., Gutierrez, A. S., Rivas-Carrillo, J. D., Navarro-Alvarez, N., Jun, H. S., Westerman, K. A., Noguchi, H., Lakey, J. R. T., Leboulch, P., Tanaka, N., and Yoon, J. W. (2005) A human ß-cell line for transplantation therapy to control type 1 diabetes. Nat. Biotechnol. 23, 1274–1282.

    Google Scholar 

  10. Efrat, S., Fusco-DeMane, D., Lemberg, H., al Emran, O., and Wang, X. (1995) Conditional transformation of a pancreatic beta-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc. Natl. Acad. Sci. U. S. A. 92, 3576–3580.

    Article  CAS  Google Scholar 

  11. May, T., Hauser, H., and Wirth, D. (2004) Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Res. 32, 5529–5538.

    Article  CAS  Google Scholar 

  12. Marinkovic, D., Marinkovic, T., Kokai, E., Barth, T., Moller, P., and Wirth, T. (2004) Identification of novel Myc target genes with a potential role in lymphomagenesis. Nucleic Acids Res. 32, 5368–5378.

    Article  CAS  Google Scholar 

  13. Noble, M., Groves, A. K., Ataliotis, P., Ikram, Z., and Jat. P. S. (1995) The H-2KbtsA58 transgenic mouse: a new tool for the rapid generation of novel cell lines. Transgenic Res. 4, 215–225.

    Article  CAS  Google Scholar 

  14. Obinata, M. (2001) Possible applications of conditionally immortalized tissue cell lines with differentiation functions. Biochem. Biophys. Res. Commun. 286, 667–672.

    Article  CAS  Google Scholar 

  15. May, T., Mueller, P. P., Weich, H., Froese, N., Deutsch, U., Wirth, D., Kroger, A., and Hauser, H. (2005) Establishment of murine cell lines by constitutive and conditional immortalization. J. Biotechnol. 120, 99–110.

    Article  CAS  Google Scholar 

  16. Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., and Hillen, W. (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. U. S. A. 97, 7963–7968.

    Article  CAS  Google Scholar 

  17. Markusic, D., Oude-Elferink, R., Das, A. T., Berkhout, B., and Seppen, J. (2005) Comparison of single regulated lentiviral vectors with rtTA expression driven by an autoregulatory loop or a constitutive promoter. Nucleic Acids Res. 33, e63.

    Article  Google Scholar 

  18. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92, 9363–9367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

May, T., Hauser, H., Wirth, D. (2007). In Vitro Expansion of Tissue Cells by Conditional Proliferation. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics