Skip to main content

Microtubules

An Overview

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

Microtubules are found in all eukaryotes and are built from αβ-tubulin heterodimers. The α-tubulins and β-tubulins are among the most highly conserved eukaryotic proteins. Other members of the tubulin family have come to light recently and, like γ-tubulin, appear to play roles in microtubule nucleation and assembly. Microtubule assembly is accompanied by hydrolysis of GTP associated with β-tubulin so that microtubules consist principally of “GDP-tubulin” stabilized by a short “GTP cap.” Microtubules are polar, cylindrical structures some 25 nm in diameter. Protofilaments made from tubulin heterodimers run lengthwise along the microtubule wall with the β-tubulin subunit at the microtubule plus end. The crystallographic structures of tubulins are essential to understand in detail microtubule architecture and interactions with stabilizing and destabilizing drugs and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., and Doolittle, W. F. (2000) A kingdom level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.

    Article  CAS  PubMed  Google Scholar 

  2. Luduena, R. F. (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. 178, 207–275.

    Article  CAS  PubMed  Google Scholar 

  3. Dutcher, S. K. (2003) Long-lost relatives reappear: identification of new members of the tubulin superfamily. Curr. Opin. Microbiol. 6, 634–640.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, P. G. and Borisy, G. G. (1997) Evolution of the multi-tubulin hypothesis. BioEssays 19, 451–454.

    Article  CAS  PubMed  Google Scholar 

  5. McKean, P. G., Vaughan, S., and Gull, K. (2001) The extended tubulin superfamily. J. Cell Sci. 114, 2723–2733.

    CAS  PubMed  Google Scholar 

  6. Savage, C. and Chalfie, M. (1991) Genetic aspects of microtubule biology in the nematode Caenorhabditis elegans. Cell Motil. Cytoskel. 18, 159–163.

    Article  CAS  Google Scholar 

  7. Fukushiga, T., Siddiqui, Z. K., Chou, M., et al. (1999) Mec-12, an α-tubulin required for touch sensitivity in C. elegans. J. Cell Sci. 112, 395–403.

    Google Scholar 

  8. Oakely, C. E. and Oakely, B. R. (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–664.

    Article  Google Scholar 

  9. Oakely, B. R. (1992) γ-tubulin: the microtubule organiser? Trends Cell Biol. 2, 1–5.

    Article  Google Scholar 

  10. Dictenberg, J. B., Zimmerman, W., Sparks, C. A., et al. (1998) Pericentrin and γ-tubulin form a protein complex and are organised into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174.

    Article  CAS  PubMed  Google Scholar 

  11. Zimmerman, W. C., Sillibourne, J., Rosa, J., and Doxsey, S. J. (2004) Mitosisspecific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell. 15, 3642–3657.

    Article  CAS  PubMed  Google Scholar 

  12. Goehring, N. W. and Beckwith, J. (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr. Biol. 15, R514–R526.

    Article  CAS  PubMed  Google Scholar 

  13. Erickson, H. P. (1997) FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol. 7, 362–370.

    Article  CAS  PubMed  Google Scholar 

  14. Löwe, J. and Amos, L. A. (1998) Crystal structure of the bacterial cell division protein FtsZ. Nature 391, 203–206.

    Article  PubMed  Google Scholar 

  15. Nogales, E., Downing, K. H., Amos, L. A., and Löwe, J. (1998) Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458.

    Article  CAS  PubMed  Google Scholar 

  16. Oliva, M. A., Cordell, S. C., and Lowe, J. (2004) Structural insights into FtsZ protofilament formation. Nat. Struct. Mol. Biol. 11, 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  17. Jenkins, C., Samudrala, R., Anderson, I., et al. (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. USA 99, 17,049–17,054.

    Article  CAS  PubMed  Google Scholar 

  18. Sontag, C. A., Staley, J. T., and Erickson, H. P. (2005) In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J. Cell Biol. 169, 233–238.

    Article  CAS  PubMed  Google Scholar 

  19. Schlieper, D., Oliva, M. A., Andreu, J. M., and Löwe, J. (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc. Natl. Acad. Sci. USA 102, 9170–9175.

    Article  CAS  PubMed  Google Scholar 

  20. Asnes, C. F. and Wilson, L. (1979) Isolation of bovine brain microtubule proteins without glycerol: polymerisation kinetics change during purification cycles. Anal. Biochem. 98, 64–73.

    Article  CAS  PubMed  Google Scholar 

  21. Carlier M.F. (1991) Nucleotide hydrolysis in cytoskeletal assembly. Curr. Opin. Cell Biol. 3, 12–17.

    Article  CAS  PubMed  Google Scholar 

  22. Caplow, M. (1992) Microtubule dynamics. Curr. Opin. Cell Biol. 4, 58–65.

    Article  CAS  PubMed  Google Scholar 

  23. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., and Mitchison, T. J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167.

    CAS  PubMed  Google Scholar 

  24. Mandelkow, E. M., Mandelkow, E, and Milligan, R. A. (1991) Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991.

    Article  CAS  PubMed  Google Scholar 

  25. Melki, R., Carlier. M.-F., Pantaloni, D., and Timasheff, S. N. (1989) Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochem. 28, 9143–9152.

    Article  CAS  Google Scholar 

  26. Horio, T. and Hotani, H. (1986) Visualization of the dynamic instabilty of individual microtubules by dark-field microscopy. Nature 321, 605–607.

    Article  CAS  PubMed  Google Scholar 

  27. Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312, 237–242.

    Article  CAS  PubMed  Google Scholar 

  28. Severin, F. F., Sorger, P. K., and Hyman, A. A. (1997) Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Nature 388, 888–891.

    Article  CAS  PubMed  Google Scholar 

  29. Bloom, G. S. and Endow, S. A. (1995) Motor proteins 1: kinesins. Protein Profile 12, 1105–1171.

    Google Scholar 

  30. Raff, E. C., Fackenthal, J. D., Hutchens, J. A., Hoyle, H. D., and Turner, F. R. (1997) Microtubule architecture specified by a β-tubulin isoform. Science 275, 70–73.

    Article  CAS  PubMed  Google Scholar 

  31. Chrétien, D. and Wade, R. H. (1991) New data on the microtubule surface lattice. Biol. Cell 71, 161–174

    Article  PubMed  Google Scholar 

  32. Meurer-Grob, P., Kasparian, J., and Wade, R. H. (2001) Microtubule structure at improved resolution. Biochem. 40, 8000–8008.

    Article  CAS  Google Scholar 

  33. Mitchison, T. J. (1993) Localisation of an exchangeable GTP binding site at the plus end of microtubules. Science 261, 1044–1047.

    Article  CAS  PubMed  Google Scholar 

  34. Hirose, K., Fan, J., and Amos, L. A. (1995) Re-examination of the polarity of microtubules and sheets decorated with kinesin motor domain. J. Mol. Biol. 251, 329–333.

    Article  CAS  PubMed  Google Scholar 

  35. Fan, J., Griffith, A. D., Lockhart, A., and Cross, R. A. (1996) Microtubule minus ends can be labelled with a phage display antibody specific to alpha-tubulin. J. Mol. Biol. 259, 325–330.

    Article  CAS  PubMed  Google Scholar 

  36. Wade, R. H. and Hyman, A. A. (1997) Microtubule structure and dynamics. Curr. Opin. Cell Biol. 9, 12–17.

    Article  CAS  PubMed  Google Scholar 

  37. Amos, L. A. and Klug, A. (1974) Arrangement of subunits in flagellar microtubules. J. Cell Sci. 14, 523–549.

    CAS  PubMed  Google Scholar 

  38. Song, Y.-H. and Mandelkow, E. (1993) Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. Proc. Natl. Acad. Sci. USA 90, 1671–1675.

    Article  CAS  PubMed  Google Scholar 

  39. Metoz, F., Arnal, I., and Wade R. H. (1997) Tomography without tilt: three-dimensional imaging of microtubule-motor complexes. J. Struct. Biol. 118, 159–168.

    Article  CAS  PubMed  Google Scholar 

  40. Chrétien, D., Fuller, S. D., and Karsenti, E. (1995) Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328.

    Article  PubMed  Google Scholar 

  41. Nogales, E., Wolf, S. G., Downing, K. A. (1998) Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203

    Article  CAS  PubMed  Google Scholar 

  42. Gigant, B., Curmi, P. A., Martin-Barbey, C., et al. (2000) The 4 Å X-ray structure of a tubulin:stathmin-like domain complex, Cell 102, 809–816.

    Article  CAS  PubMed  Google Scholar 

  43. Ravelli, R. B. G., Gigant, B., Curmi, P. A., et al. (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202.

    Article  CAS  PubMed  Google Scholar 

  44. Gigant, B., Wang, C., Ravelli, R. B. G., et al. (2005) Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519–522.

    Article  CAS  PubMed  Google Scholar 

  45. Eldaz, H., Rice, L. M., Stearns, T., and Agard, D. A. (2005) Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature 435, 523–527.

    Article  Google Scholar 

  46. Li, H., DeRosier, D. J., Nicholson, W. V., Nogales, E., and Downing, K. H. (2002) Microtubule structure at 8 Å resolution. Structure 10, 13,417–13,428.

    Google Scholar 

  47. Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. (1999) High resolution model of the microtubule. Cell 96, 79–88.

    Article  CAS  PubMed  Google Scholar 

  48. Wood, K. W., Cornwell, W. D., and Jackson, J. R. (2001) Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmaco. 1, 370–377.

    Article  CAS  Google Scholar 

  49. Giannakakou, P., Sackett, D. L., Kang, Y.-K., et al. (1997) Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerisation, J. Biol. Chem. 272, 17,118–17,125.

    Article  CAS  PubMed  Google Scholar 

  50. Hyman, A. A., Chrétien, D., Arnal, I., and Wade R. H. (1995) Structural changes accompagnying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α,β)-methelyne-diphosphonate. J. Cell Biol. 128, 117–125.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Wade, R.H. (2007). Microtubules. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics