Skip to main content

Mitochondrial DNA Mutations in Tumors

  • Chapter
  • First Online:
Cellular Respiration and Carcinogenesis

Abstract

Mitochondria are subcellular organelles with the most well-known and best-characterized function of adenosine triphosphate (ATP) production through oxidative phosphorylation (OXPHOS). Mitochondria play an important role in apoptosis, a fundamental biological process by which cells die in a programmed manner and are the strategic point in the cell death cascade. Alterations in respiratory activity and mitochondrial DNA (mtDNA) abnormalities appear to be a general feature of malignant cells. The presence of mtDNA mutations has been reported in most types of cancer. However, the functional consequences and clinical relevance of these mutations are not clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C, Avadhani NG. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 2000; 20:1910–1912.

    Article  Google Scholar 

  2. Fernandez-Silva P, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 2003; 88:41–56.

    Article  PubMed  CAS  Google Scholar 

  3. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39:359–407.

    Article  PubMed  CAS  Google Scholar 

  4. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer 2002; 1:1–12.

    Article  PubMed  Google Scholar 

  5. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 1988; 242:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  6. Ruiz-Pesini E, Lott MT, et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 2007; 35:D823–D828.

    Article  PubMed  CAS  Google Scholar 

  7. Warburg O. On the origin of cancer cells. Science 1956; 123:309–314.

    Article  PubMed  CAS  Google Scholar 

  8. Gottlieb E, Tomlinson JP. Mitochondrial tumor suppressors: a genetic and biochemical update. Nat Rev Cancer 2005; 5:857–866.

    Article  PubMed  CAS  Google Scholar 

  9. Czarnecka AM, Golik P, Bartnik E. Mitochondrial DNA mutations in human neoplasia. J Appl Genet 2006; 47:67–78.

    Article  PubMed  Google Scholar 

  10. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290:457–465.

    Article  PubMed  CAS  Google Scholar 

  11. Penta JS, Johnson FM, Wachsman JT, Copeland WC. Mitochondrial DNA in human malignancy. Mutat Res 2001; 488:119–133.

    Article  PubMed  CAS  Google Scholar 

  12. Lynch M. Mutation accumulation in transfer RNAs: molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 1996; 13:209–220.

    PubMed  CAS  Google Scholar 

  13. Birch-Machin M. Using mitochondrial DNA as a biosensor of early cancer development. Br J Cancer 2005; 93:271–272.

    Article  PubMed  CAS  Google Scholar 

  14. Don AS, Hogg PJ. Mitochondria as cancer drug targets. Trends Mol Med 2004; 10:372–378.

    Article  PubMed  CAS  Google Scholar 

  15. Akimoto M, Niikura M, Ichikawa M, et al. Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells. Biochem Biophys Res Commun 2005; 327:1028–1035.

    Article  PubMed  CAS  Google Scholar 

  16. Petros JA, Baumann AK, Ruiz-Pesini E, et al. MtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 2005; 102:719–724.

    Article  PubMed  CAS  Google Scholar 

  17. Shidara Y, Yamagata K, Kanamori T, et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 2005; 65:1655–1663.

    Article  PubMed  CAS  Google Scholar 

  18. Salas A, Yao YG, Macaulay V, Vega A, Carracedo A, Bandelt HJ. A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2005 2:e296.

    Article  PubMed  Google Scholar 

  19. Zanssen S, Schon EA. Mitochondrial DNA mutations in cancer. PLoS Med 2005; 2: 1082–1084.

    Article  CAS  Google Scholar 

  20. Bianchi NO, Bianchi MS, Richard SM. Mitochondrial genome instability in human cancer. Rev Mut Res 2001; 488:9–23.

    CAS  Google Scholar 

  21. Brown DT, Samuels DC, Michael EM, Turnbull DM, Chinnery PF. Random genetic drift determines the level of mutant mtDNA in human primary oocytes. Am J Hum Genet 2001; 68:533–536.

    Article  PubMed  CAS  Google Scholar 

  22. Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 2001; 12:449–457.

    Article  PubMed  CAS  Google Scholar 

  23. Lorenc A, Bryk J, Golik P,et al. Homoplasmic MELAS A3243G mtDNA mutation in colon cancer sample. Mitochondrion 2003; 3:119–124.

    Article  PubMed  CAS  Google Scholar 

  24. Chinnery PF, Samuels DC, Elson J, Turnbull DM. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 2002; 360:1323–1325.

    Article  PubMed  CAS  Google Scholar 

  25. Meierhofer D, Mayr JA, Fink K, Schmeller N, Kofler B, Sperl W. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Br J Cancer 2006; 94:268–274.

    Article  PubMed  CAS  Google Scholar 

  26. Augenlicht LH, Heerdt BG. Mitochondria: integrators in tumorigenesis? Nat Genet 2001; 28:104–105.

    Article  PubMed  CAS  Google Scholar 

  27. Yamauchi A. Rate of gene transfer from mitochondria to nucleus: effects of cytoplasmic inheritance system and intensity of intracellular competition. Genetics 2005; 171:1387–1396.

    Article  PubMed  CAS  Google Scholar 

  28. Polyak K, Li Y, Zhu H, et al. Somatic mutations of the mitochondrial genome in human colorectal tumors. Nat Genet 1998; 20:291–293.

    Article  PubMed  CAS  Google Scholar 

  29. Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet 2001; 28:147–150.

    Article  PubMed  CAS  Google Scholar 

  30. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7:97–110.

    Article  PubMed  CAS  Google Scholar 

  31. Samuels DC, Carothers AD, Horton R, Chinnery PF. The power to detect disease associations with mitochondrial DNA haplogroups. Am J Hum Genet 2006; 78:713–720.

    Article  PubMed  CAS  Google Scholar 

  32. Ingman M, Gyllensten U. mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences. Nucl Acids Res 2006; 34:D749–D751.

    Article  PubMed  CAS  Google Scholar 

  33. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006; 25:4647–4662.

    Article  PubMed  CAS  Google Scholar 

  34. Gasparre G, Porcelli AM, Bonora E, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci USA 2007; 104:9001–9006.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou S, Kachhap S, Sun W, et al. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck. Proc Natl Acad Sci USA 2007; 104:7540–7546.

    Article  PubMed  CAS  Google Scholar 

  36. Booker LM, Habermacher GM, Jessie BC, et al. North American white mitochondrial haplogroups in prostate and renal cancer. J Urol 2006; 175:468–472; discussion 472–473.

    Article  PubMed  CAS  Google Scholar 

  37. Darvishi K, Sharma S, Bhat AK, Rai E, Bamezai RN. Mitochondrial DNA G10398A polymorphism imparts maternal Haplogroup N a risk for breast and esophageal cancer. Cancer Lett 2007; 249:249–255.

    Article  PubMed  CAS  Google Scholar 

  38. Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 2006; 38:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  39. Battersby BJ, Shoubridge E. Reactive oxygen species and the segregation of mtDNA sequence variants. Nat Genet 2007;39:571–572.

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by an intramural grant from The Faculty of Biology, University of Warsaw and grant NN 401 2327 33 from the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Bartnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Czarnecka, A., Bartnik, E. (2009). Mitochondrial DNA Mutations in Tumors. In: Sarangarajan, R., Apte, S. (eds) Cellular Respiration and Carcinogenesis. Humana Press. https://doi.org/10.1007/978-1-59745-435-3_9

Download citation

Publish with us

Policies and ethics