Skip to main content

Role of Model Plant Species

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

The study of plant genomics today in crop species that provide food, fibre, feed and energy is deeply rooted in earlier studies on model species. Model species are often diploid, with few chromosomes, small genomes and can be manipulated via plant transformation. Some model species include Arabidopsis, sorghum, rice and Brachypodium which represent well, both dicotyledon and monocotyledon plants species as well as different plant development and flowering structures. The genomes of the model species share reasonably good synteny and orthology with crop species which facilitates the discovery of genes and association of genes with phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flavell, R.B. (1992) The value of model systems for the future plant breeder, in Plant Breeding in the 1990s (Stalker, H.T. and Murphy, J.P. eds.), CAB International, Oxford, UK, pp. 409–419

    Google Scholar 

  2. Flavell, R.B. (2005) Model plants with special emphasis on Arabidopsis thaliana and crop improvement, in Proceedings of the International Congress (Tuberosa, R., Phillips, R.L., and Gale, M. eds.), Avenue Media, Bologna, Italy, pp. 365–378.

    Google Scholar 

  3. Somerville, C. (1989) Arabidopsis blooms. Plant Cell 1, 1131–1135.

    Article  Google Scholar 

  4. Meyerowitz, E.M. (1989) Arabidopsis, a useful weed. Cell 56, 263–269.

    Article  PubMed  CAS  Google Scholar 

  5. Somerville, C. and Koornneef, M. (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889.

    Article  PubMed  CAS  Google Scholar 

  6. Bevan, M.W. and Walsh, S. (2004) Positioning Arabidopsis in plant biology. A key step toward unification of plant research. Plant Physiol. 135, 602–606.

    Article  PubMed  CAS  Google Scholar 

  7. Glass, B. (1951) Cold Spring Harbor. Symp. Quant. Biol. 16, 281.

    Google Scholar 

  8. Redei, G.P. (1992) A heuristic glance at the past of Arabidopsis genetics, in Methods in Arabidopsis Research (Konz, C., Chua, N.-H., and Schell, J. eds.), World Scientific Publishing Co., Singapore, pp. 1–15.

    Google Scholar 

  9. Koornneef, M., Dellaert, L., and van der Veen, J.H. (1982) EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat. Res. 93, 109–123.

    Article  PubMed  CAS  Google Scholar 

  10. Yu, J., Hu, S.N., Wang, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L ssp.indica). Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  11. Goff, S.A., Ricke, D., Lan, T.H., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  12. Ma, J., Wing, R.A., Bennetzen, J.L., and Jackson, S.A. (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet. 23, 134–139.

    Article  PubMed  CAS  Google Scholar 

  13. Tuskan, G.A., DiFazio, S.P., and Teichmann, T. (2003) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol. 5, 1–3.

    Article  Google Scholar 

  14. Wullschleger, S.D., Jansson, S., and Taylor, G. (2002) Genomics and forest biology. Plant Cell 14, 2651–2655.

    Article  PubMed  CAS  Google Scholar 

  15. Brunner, A.M., Busov, V.B., and Strauss, S. (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci. 9, 49–56.

    Article  PubMed  CAS  Google Scholar 

  16. Draper, J., Mur, L.A.J., Jenkins, G., et al. (2001) Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiol. 127, 1539–1555.

    Article  PubMed  CAS  Google Scholar 

  17. MCAt-FGP. (2007) The Multinational Coordinated Arabidopsis thaliana Functional Genomics Project Annual Report.

    Google Scholar 

  18. The Rice Full-length cDNA Consortium. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301, 376–379.

    Article  Google Scholar 

  19. Phillips, R.L., Leung, H., and Cantrell, R. (2004) An international platform for the assessment of gene function in rice. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia. Published on CD-ROM. www.cropscience.org.au

  20. TAIR. (2007) The Arabidopsis Information Resource. www.arabidopsis.org

  21. Haas, B.J., Volfovsky, N., Town, C.D., Troukhan, M., Alexandrov, N., Feldmann, K.A., Flavell, R.B., White, O., and Salzberg, S.L. (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol. 3(6), Epub May30.

    Google Scholar 

  22. The Rice Genome Resource Center (RGRC). http://www.rgrc.dna.affrc.go.jp/<!

  23. Maher, C., Stein, L., and Ware, D. (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 16, 510–519.

    Article  PubMed  CAS  Google Scholar 

  24. Somerville, C. and Dangl, J. (2000) Genomics: plant biology in 2010. Science 290, 2077–2078.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, X., Yazachi, J., Sundaresan, A., et al. (2006) High resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201.

    Article  PubMed  CAS  Google Scholar 

  26. Clark, J.I., Brooksbank, C., and Lomax, J. (2005) It's all GO for plant scientists. Plant Physiol. 138, 1268–1279.

    Article  PubMed  CAS  Google Scholar 

  27. Miyao, A., Tanaka, K., Murata, K., Sawaki, H., Takeda, S., Abe, K., Shinozuka, V., Onosato, K., and Hirochika, H. (2003) Target site specificity of the TOS 17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15, 1771–1780.

    Article  PubMed  Google Scholar 

  28. Ichikawa, T., Nagazawa, M., Kawashima, M., et al. (2003) Sequence database of 1172 T-DNA insertion lines in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J. 36, 421–429.

    Article  PubMed  CAS  Google Scholar 

  29. Young, J.C., Krysan, P.J., and Sussman, M.R. (2001) Efficient screening of Arabidopsis T-DNA insertion lines using degenerate primers. Plant Physiol. 125, 513–518.

    Article  PubMed  CAS  Google Scholar 

  30. Weigel, D., Ahn, J.H., Blazquez, M.A., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  31. Fernie, A.R. and Willmitzer, L. (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127, 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  32. Plomion, C., Leprovost, G., and Stokes, A. (2001) Wood formation in trees. Plant Physiol. 127, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  33. Nieminen, K.M., Kauppinen, L., and Helariutta, Y. (2004) A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 135, 653–659.

    Article  PubMed  CAS  Google Scholar 

  34. Gadkar, V., David-Schwartz, R., Kunik, T., and Kapulnik, Y. (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol. 127, 1493–1499.

    Article  PubMed  CAS  Google Scholar 

  35. Schaefer, D.G. and Zryd, J.-P. (2001) The moss Physcomitrella patens, now and then. Plant Physiol. 127, 1430–1438.

    Article  PubMed  CAS  Google Scholar 

  36. Gutman, B.L. and Niyogi, K.K. (2004) Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol. 135, 607–610.

    Article  PubMed  CAS  Google Scholar 

  37. Bonierbale, M.W., Plaisted, R.L., and Tanksley, S.D. (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120, 1095–1103.

    PubMed  CAS  Google Scholar 

  38. Acarkan, A., Rossberg, M., Koch, M., and Schmidt, R. (2000) Comparative genome analysis reveals extensive conservation of genome organization for Arabidopsis thaliana and Capsella rubella. Plant J. 23, 55–62.

    Article  PubMed  CAS  Google Scholar 

  39. Rossberg, M., Theres, K., Acarkan, A., Herrero, R., Schmitt, T., Schumaker, K., Schmitz, G., and Schmidt, R. (2001) Comparative sequence analysis reveals extensive microcolinearity in the Lateral Suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13, 979–988.

    Article  PubMed  CAS  Google Scholar 

  40. Grant, D., Cregan, P., and Shoemaker, R.C. (2006) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 4168–4173.

    Article  Google Scholar 

  41. Ku, H.-M., Vision, T., Liu, J., and Tanksley, S.D. (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126.

    Article  PubMed  CAS  Google Scholar 

  42. Jung, S., Main, D., Staton, M., Cho, I., Zhebentyayeva, T., ArĂşs, P., and Abbott, A. (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7, 81.

    Article  PubMed  Google Scholar 

  43. Timms, L., Jimenez, R., Chase, M., Lavelle, D., McHale, L., Kozik, A., Lai, Z., Heesacker, A., Knapp, S., Rieseberg, L., Michelmore, R., and Kesseli, R. (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173, 2227–2235.

    Article  PubMed  CAS  Google Scholar 

  44. Devos, K.M. and Gale, M.D. (2000) Genome relationships: the grass model in current research. Plant Cell 12, 636–646.

    Article  Google Scholar 

  45. Tarchini, R., Biddle, P., Wineland, R., Tingey, S., and Rafalski, A. (2000) The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12, 381–391.

    Article  PubMed  CAS  Google Scholar 

  46. Bennetzen, J.L. and Ma, J. (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr. Opin. Plant Biol. 6, 128–133.

    Article  PubMed  CAS  Google Scholar 

  47. Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I., and Moore, G. (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploidy wheat. Nature 439, 749–752.

    Article  PubMed  CAS  Google Scholar 

  48. Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flingham, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudakar, D., Christou, P., Snape, J.W., Gale, M.D., and Harberd, N.P. (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400, 256–261.

    Article  PubMed  CAS  Google Scholar 

  49. Fu, X., Sudhakar, D., Peng, J., Richards, D.E., Christou, P., and Harberd, N.P. (2001) Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. Plant Cell 13, 1791–1802.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas, S.G. and Hedden, P. (2006) Gibberellin metabolism and signal transduction, in Plant Hormone Signalling (Hedden, P. and Thomas, S.G. eds. Blackwell Publishing Ltd., Oxford, UK, pp. 147–184.

    Google Scholar 

  51. Hedden, P. (2006) Essay 20.2 Plant Physiology. 4th Edition, online. Green Revolution Genes.

    Google Scholar 

  52. Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., and Matusoka, M. (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134, 1642–1653.

    Article  PubMed  CAS  Google Scholar 

  53. Izawa, T., Takahashi, Y., and Yano, M. (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering in rice and Arabidopsis. Curr. Opin. Plant Biol. 6, 113–120.

    Article  PubMed  CAS  Google Scholar 

  54. Hayama, R. and Coupland, G. (2004) The Molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 135, 677–684.

    Article  PubMed  CAS  Google Scholar 

  55. Anderson, C.H., Jensen, C.S., and Petersen, K. (2004) Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots. Trends Plant Sci. 9, 105–107.

    Article  Google Scholar 

  56. Imaizumi, T. and Kay, S.A. (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550–558.

    Article  PubMed  CAS  Google Scholar 

  57. Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., San Miguel, P., Bennetzen, J.L., Echenique, V., and Dubcovsky, J. (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640–1644.

    Article  PubMed  CAS  Google Scholar 

  58. Griffiths, S., Dunford, R.P., Coupland, G., and Laurie, D.A. (2003) The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol. 131, 1855–1867.

    Article  PubMed  CAS  Google Scholar 

  59. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. (2003) Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  60. Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., and Dubcovsky, J. (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Nat. Acad. Sci. 103, 19581–19586.

    Article  PubMed  CAS  Google Scholar 

  61. Jaeger, K. and Wigge, P. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050–1054.

    Article  PubMed  CAS  Google Scholar 

  62. Osborn, T.C., Kole, C., Parkin, I.A.P., et al. (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146, 1123–1129.

    PubMed  CAS  Google Scholar 

  63. Okazaki, K., Sakamoto, K., Kikuchi, R., et al. (2007) Mapping and characterization of FC homologs and QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 114, 595–608.

    Article  PubMed  CAS  Google Scholar 

  64. Olsen, O.-A. (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16, S214–S227.

    Article  PubMed  CAS  Google Scholar 

  65. Daly, D.C., Cameron, K.M., and Stevenson, D.W. (2001) Plant systematics in the age of genomics. Plant Physiol. 127, 1328–1333.

    Article  PubMed  CAS  Google Scholar 

  66. Angiosperm Phylogeny Group. (1998) Ann. Missouri Bot. Gard. 84, 1–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Flavell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Flavell, R. (2009). Role of Model Plant Species. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics