Skip to main content

Humanized Model to Study Leukemic Stem Cells

  • Protocol
  • First Online:
Leukemia

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 538))

Summary

The xenotransplantation model has been instrumental for the identification and characterization of human leukemic stem cells. In this chapter we will discuss the development of the immunodeficient model in the understanding of leukemogenesis, describe the different models of immunodeficiency now available and their values, as well as describe the methods used for the purification of LSCs. We will concentrate on the model of acute myeloid leukemia, as it was the first type of leukemia for which the xenotransplantation model was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grimwade, D., Walker, H., Harrison, G., Oliver, F., Chatters, S., Harrison, C. J., et al. (2001). The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98, 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  2. Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., et al. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 92, 2322–2333.

    CAS  Google Scholar 

  3. Pearce, D. J., Taussig, D., Zibara, K., Smith, L. L., Ridler, C. M., Preudhomme, C., et al. (2006). AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 107, 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  4. Christianson, S. W., Greiner, D. L., Hesselton, R. A., Leif, J. H., Wagar, E. J., Schweitzer, I. B., et al. (1997). Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158, 3578–3586.

    PubMed  CAS  Google Scholar 

  5. Glimm, H., Eisterer, W., Lee, K., Cashman, J., Holyoake, T. L., Nicolini, F., et al. (2001). Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 107, 199–206.

    Article  PubMed  CAS  Google Scholar 

  6. Kollet, O., Peled, A., Byk, T., Ben-Hur, H., Greiner, D., Shultz, L., et al. (2000). beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95, 3102–3105.

    PubMed  CAS  Google Scholar 

  7. Hiramatsu, H., Nishikomori, R., Heike, T., Ito, M., Kobayashi, K., Katamura, K., et al. (2003). Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 102, 873–880.

    Article  PubMed  CAS  Google Scholar 

  8. Yahata, T., Ando, K., Nakamura, Y., Ueyama, Y., Shimamura, K., Tamaoki, N., et al. (2002). Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol 169, 204–209.

    PubMed  CAS  Google Scholar 

  9. Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., et al. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106, 1565–1573.

    Article  PubMed  CAS  Google Scholar 

  10. Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174, 6477–6489.

    PubMed  CAS  Google Scholar 

  11. Traggiai, E., Chicha, L., Mazzucchelli, L., Bronz, L., Piffaretti, J. C., Lanzavecchia, A., et al. (2004). Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107.

    Article  PubMed  CAS  Google Scholar 

  12. Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., et al. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chainnull mice. Blood.

    Google Scholar 

  13. Mazurier, F., Doedens, M., Gan, O. I., and Dick, J. E. (2003). Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 9, 959–963.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, J., Kimura, T., Asada, R., Harada, S., Yokota, S., Kawamoto, Y., et al. (2003). SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 101, 2924–2931.

    Article  PubMed  CAS  Google Scholar 

  15. Yahata, T., Ando, K., Sato, T., Miyatake, H., Nakamura, Y., Muguruma, Y., et al. (2003). A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 101, 2905–2913.

    Article  PubMed  CAS  Google Scholar 

  16. Bonnet, D., and Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  17. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M., and Sutherland, H. J. (1997). Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112.

    PubMed  CAS  Google Scholar 

  18. Blair, A., Hogge, D. E., and Sutherland, H. J. (1998). Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR. Blood 92, 4325–4335.

    PubMed  CAS  Google Scholar 

  19. Blair, A., and Sutherland, H. J. (2000). Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28, 660–671.

    Article  PubMed  CAS  Google Scholar 

  20. Jordan, C. T., Upchurch, D., Szilvassy, S. J., Guzman, M. L., Howard, D. S., Pettigrew, A. L., et al. (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784.

    Article  PubMed  CAS  Google Scholar 

  21. Taussig, D. C., Pearce, D. J., Simpson, C., Rohatiner, A. Z., Lister, T. A., Kelly, G., et al. (2005). Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 106, 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, J. S., Fang, Q., Sun, D. J., Chen, J., Zhou, X. L., Lin, G. W., et al. (2001). Genetic modification of hematopoietic progenitor cells for combined resistance to 4-hydroperoxycyclophosphamide, vincristine, and daunorubicin. Acta Pharmacol Sin 22, 949–955.

    PubMed  CAS  Google Scholar 

  23. Duester, G. (2000). Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem 267, 4315–4324.

    Article  PubMed  CAS  Google Scholar 

  24. Kastan, M. B., Schlaffer, E., Russo, J. E., Colvin, O. M., Civin, C. I., and Hilton, J. (1990). Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75, 1947–1950.

    PubMed  CAS  Google Scholar 

  25. Jones, R. J., Barber, J. P., Vala, M. S., Collector, M. I., Kaufmann, S. H., Ludeman, S. M., et al. (1995). Assessment of aldehyde dehydrogenase in viable cells. Blood 85, 2742–2746.

    PubMed  CAS  Google Scholar 

  26. Pearce, D. J., Taussig, D., Simpson, C., Allen, K., Rohatiner, A. Z., Lister, T. A., et al. (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23, 752–760.

    Article  PubMed  CAS  Google Scholar 

  27. Hope, K. J., Jin, L., and Dick, J. E. (2004). Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5, 738–743.

    Article  PubMed  CAS  Google Scholar 

  28. Verlinden, S. F., van Es, H. H., and van Bekkum, D. W. (1998). Serial bone marrow sampling for long-term follow up of human hematopoiesis in NOD/SCID mice. Exp Hematol 26, 627–630.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Mr. Christopher Ridler and Dr. Daniel Pearce for their assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bonnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bonnet, D. (2009). Humanized Model to Study Leukemic Stem Cells. In: Eric So, C.W. (eds) Leukemia. Methods in Molecular Biology™, vol 538. Humana Press. https://doi.org/10.1007/978-1-59745-418-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-418-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-989-5

  • Online ISBN: 978-1-59745-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics