Skip to main content

Thymic Involution

Implications for Self-Tolerance

  • Protocol
Immunological Tolerance

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 380))

Abstract

The thymus contributes to the regulation of tolerance and the prevention of autoimmunity at many levels. First, auto-reactive CD4+ and CD8+ T cells are clonally deleted during negative selection in the thymus, establishing central tolerance. The unique expression of the AIRE (autoimmune regulator) gene in medullary thymic epithelial cells results in expression of a broad array of tissue-specific antigens. Thymocytes bearing T-cell receptors that bind to these tissuespecific antigens are clonally deleted. This process removes self-reactive T cells from the repertoire before T cells are exported to the periphery. Second, CD4+CD25bright regulatory T cells (Treg) develop in parallel with CD4+ and CD8+ effector T cells in the thymus (1,2). Unlike T effector cells, Treg fail to be deleted by exposure to tissue antigens during thymic maturation (3). After export to the periphery, Treg cells play a critical role in the prevention of autoimmunity, suppression of inflammatory responses, and the modulation of T-cell homeostasis (4,5). Finally, productive thymopoiesis, in and of itself, may be a factor deterring autoimmunity. The thymus continuously generates stable, resting populations of naïve T cells that maintain the numbers and the diversity of the T-cell repertoire. Under conditions of lymphopenia prolonged by inadequate thymopoiesis, compensatory peripheral expansion of T cells occurs to maintain stable T-cell levels. Under circumstances in which the repertoire is limited, homeostatic proliferation may increase the opportunity for T-cells reactive with self antigens to expand, leading to autoimmune disorders (6). In all of these respects, the thymus maintains immunologic tolerance to self. Given the importance of the thymus in control of autoimmunity, the gradual age-dependent decline in thymic cytoarchitecture and thymopoietic productivity may, therefore, contribute to the development of auto-reactivity and loss of self-tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wing, K., Ekmark, A., Karlsson, H., Rudin, A., and Suri-Payer, E. (2002) Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunol. 106, 190–199.

    Article  CAS  Google Scholar 

  2. Wing, K., Larsson, P., Sandstrom, K., Lundin, S., Suri-Payer, E., and Rudin, A. (2005) CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunol. 115, 516–525.

    Article  CAS  Google Scholar 

  3. Anderson, M. S., Venanzi, E. S., Chen, Z., Berzins, S. P., Benoist, C., and Mathis, D. (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239.

    Article  PubMed  CAS  Google Scholar 

  4. Sakaguchi, S. (2005) Naturally arising Foxp3-expressing CD25(+)CD4(+) regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352.

    Article  PubMed  CAS  Google Scholar 

  5. Shen, S., Ding, Y., Tadokoro, C. E., et al. (2005) Control of homeostatic proliferation by regulatory T cells. J. Clin. Invest. 115, 3517–3526.

    Article  PubMed  CAS  Google Scholar 

  6. King, C., Ilic, A., Koelsch, K., and Sarvetnick, N. (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117, 265–277.

    Google Scholar 

  7. Mackall, L., Fleisher, T. A., Brown, M. R., et al. (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332, 143–149.

    Article  PubMed  CAS  Google Scholar 

  8. McCune, J. M., Loftus, R., Schmidt, D. K., et al. (1998) High prevalence of thymic tissue in adults with human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2301–2308.

    Article  PubMed  CAS  Google Scholar 

  9. Hakim, F. T., Memon, S. A., Cepeda, R., et al. (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. J. Clin. Invest. 115, 930–939.

    PubMed  CAS  Google Scholar 

  10. Haynes, F., Markert, M. L., Sempowski, G. D., Patel, D. D., and Hale, L. P. (2000) The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu. Rev. Immunol. 18, 529–560.

    Article  PubMed  CAS  Google Scholar 

  11. Brelinska, R. (2003) Thymic epithelial cells in age-dependent involution. Microscopy Res. Technique 62, 488–500.

    Article  Google Scholar 

  12. Shiraishi, J., Utsuyama, M., Seki, S., et al. (2003) Essential microenvironment for thymopoiesis is preserved in human adult and aged thymus. Clin. Dev. Immunol. 10, 53–59.

    Article  PubMed  CAS  Google Scholar 

  13. Mackall, L., Punt, J. A., Morgan, P., Farr, A. G., and Gress, R. E. (1998) Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution. Eur. J. Immunol. 28, 1886–1893.

    Article  PubMed  CAS  Google Scholar 

  14. Douek, D. and Koup, R. A. (2000) Evidence for thymic function in the elderly. Vaccine 18, 1638–1641.

    Article  PubMed  CAS  Google Scholar 

  15. Jamieson, B. D., Douek, D. C., Killian, S., et al. (1999) Generation of functional thymocytes in the human adult. Immunity 10, 569–575.

    Article  PubMed  CAS  Google Scholar 

  16. Douek, D. C., McFarland, R. D., Keiser, P. H., et al. (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695.

    Article  PubMed  CAS  Google Scholar 

  17. Dion, M. L., Poulin, J. F., Bordi, R., et al. (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21, 757–768.

    Article  PubMed  CAS  Google Scholar 

  18. Schwab, R., Szabo, P., Manavalan, J. S., et al. (1997) Expanded CD4+ and CD8+ T cell clones in elderly humans. J. Immunol. 158, 4493–4499.

    PubMed  CAS  Google Scholar 

  19. Ouyang, Q., Wagner, W. M., Walter, S., et al. (2003) An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech. Ageing Dev. 124, 477–485.

    Article  PubMed  CAS  Google Scholar 

  20. Ouyang, Q., Wagner, W. M., Wikby, A., et al. (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J. Clin. Immunol. 23, 247–257.

    Article  PubMed  CAS  Google Scholar 

  21. Mackall, L., Bare, V., Granger, L. A., Sharrow, S. O., Titus, J. A., and Gress, R.E. (1996) Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J. Immunol. 156, 4609–4616.

    PubMed  CAS  Google Scholar 

  22. Goldrath, A. W., Bogatzki, L. Y., and Bevan, M. J. (2000) NaÏve T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564.

    Article  PubMed  CAS  Google Scholar 

  23. Tough, D. F. and Sprent, J. (1994) Turnover of naÏve-and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135.

    Article  PubMed  CAS  Google Scholar 

  24. Geginat, J., Lanzavecchia, A., and Sallusto, F. (2003) Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266.

    Article  PubMed  CAS  Google Scholar 

  25. Geginat, J., Sallusto, F., and Lanzavecchia, A. (2001) Cytokine-driven proliferation and differentiation of human naÏve, central memory, and effector memory CD4(+) T cells. J. Exp. Med. 194, 1711–1719.

    Article  PubMed  CAS  Google Scholar 

  26. Fry, T. J. and Mackall, C. L. (2005) The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576.

    PubMed  CAS  Google Scholar 

  27. Beyer, M., Kochanek, M., Giese, T., et al. (2006) In vivo peripheral expansion of naÏve CD4+CD25high FOXP3+ regulatory T cells in patients with multiple myeloma. Blood 107, 3940–3949.

    Article  PubMed  CAS  Google Scholar 

  28. Seddiki, N., Santner-Nanan, B., Tangye, S. G., et al. (2006) Persistence of naÏve CD45RA+ regulatory T cells in adult life. Blood 107, 2830–2838.

    Article  PubMed  CAS  Google Scholar 

  29. Beyer, M., Kochanek, M., Darabi, K., et al. (2005) Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 106, 2018–2025.

    Article  PubMed  CAS  Google Scholar 

  30. Walker, M. R., Kasprowicz, D. J., Gersuk, V. H., et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T cells. J. Clin. Invest. 112, 1437–1443.

    PubMed  CAS  Google Scholar 

  31. Gregg, R., Smith, M., Clark, F. J., et al. (2005) The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin. Exp. Immunol. 140, 540–546.

    Article  PubMed  CAS  Google Scholar 

  32. Tsaknaridis, L., Spencer, L., Culbertson, N., et al. (2003) Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J. Neurosci. Res. 74, 296–308.

    Article  PubMed  CAS  Google Scholar 

  33. French, R. A., Broussard, S. R., Meier, W. A., et al. (2002) Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinol. 143, 690–699.

    Article  CAS  Google Scholar 

  34. Vigano, A., Saresella, M., Trabattoni, D., et al. (2004) Growth hormone in T-lymphocyte thymic and postthymic development: a study in HIV-infected children. J. Pediatr. 145, 542–548.

    Article  PubMed  CAS  Google Scholar 

  35. Napolitano, L. A., Lo, J. C., Gotway, M. et al. (2002) Increased thymic mass and circulating naÏve CD4 T cells in HIV-1-infected adults treated with growth hormone. Aids 16, 1103–1111.

    Article  PubMed  CAS  Google Scholar 

  36. Leposavic, G., Obradovic, S., Kosec, D., Pejcic-Karapetrovic, B., and Vidic-Dankovic, B. (2001) In vivo modulation of the distribution of thymocyte subsets by female sex steroid hormones. Int. Immunopharmacol. 1, 1–12.

    Article  PubMed  CAS  Google Scholar 

  37. Greenstein, B. D., Fitzpatrick, F. T., Adcock, I. M., Kendall, M. D., and Wheeler, M. J. (1986) Reappearance of the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone. J. Endocrinol. 110, 417–422.

    Article  PubMed  CAS  Google Scholar 

  38. Windmill, K. F. and Lee, V. W. (1998) Effects of castration on the lymphocytes of the thymus, spleen and lymph nodes. Tissue Cell 30, 104–111.

    Article  PubMed  CAS  Google Scholar 

  39. Sutherland, J. S., Goldberg, G. L., Hammett, M. V., et al. (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 175, 2741–2753.

    PubMed  CAS  Google Scholar 

  40. Peschon, J. J., Morrissey, P. J., Grabstein, K. H., et al. (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  41. Phillips, J. A., Brondstetter, T. L, English, A., Lee, H. E., Virts, E. L., and Thoman, M. L. (2004) IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J. Immunol. 173, 4867–4874.

    PubMed  CAS  Google Scholar 

  42. Andrew, D. and Aspinall, R. (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp. Gerontol. 37, 455–463.

    Article  PubMed  CAS  Google Scholar 

  43. Ortman, L., Dittmar, K. A., Witte, P. L., and Le, P. T. (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int. Immunol. 14, 813–822.

    Article  PubMed  CAS  Google Scholar 

  44. Sempowski, G. D., Hale, L. P., Sundy, J. S., et al. (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J. Immunol. 164, 2180–2187.

    PubMed  CAS  Google Scholar 

  45. Talvensarri, K., Clave, E., Douay, C., et al. (2002) A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 99, 1458–1464.

    Article  Google Scholar 

  46. Sharp, A., Kukulansky, T., and Globerson, A. (1990) In vitro analysis of age-related-changes in the developmental potential of bone-marrow thymocyte progenitors. Eur. J. Immunol. 20, 2541–2546.

    Article  PubMed  CAS  Google Scholar 

  47. Hirokawa, K., Kubo, S., Utsuyama, M., Kurashima, C., and Sado, T. (1986) Age-related change in the potential of bone marrow cells to repopulate the thymus and splenic T cells in mice. Cell. Immunol. 100, 443–451.

    Article  PubMed  CAS  Google Scholar 

  48. Min, H., Montecino-Rodriguez, E., and Dorshkind, K. (2004) Reduction in the developmental potential of intrathymic T cell progenitors with age. J. Immunol. 173, 245–250.

    PubMed  CAS  Google Scholar 

  49. Foss, D. L., Donskoy, E., and Goldschneider, I. (2001) The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374.

    Article  PubMed  CAS  Google Scholar 

  50. Prockop, S. E. and Petrie, H. T. (2004) Regulation of thymus size by competition for stromal niches among early T cell progenitors. J. Immunol. 173, 1604–1611.

    PubMed  CAS  Google Scholar 

  51. Almeida, A. R., Borghans, J. A., and Freitas, A. A. (2001) T cell homeostasis: thymus regeneration and peripheral T cell restoration in mice with a reduced fraction of competent precursors. J. Exp. Med. 194, 591–599.

    Article  PubMed  CAS  Google Scholar 

  52. Douek, D. C., Vescio, R. A., Betts, M. R., et al. (2000) Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 355, 1875–1881.

    Article  PubMed  CAS  Google Scholar 

  53. Kolte, L., Strandberg, C., Dreves, A. M., et al. (2002) Thymic involvement in immune recovery during antiretroviral treatment of HIV infection in adults; comparison of CT and sonographic findings. Scand. J. Infect. Dis. 34, 668–672.

    Article  PubMed  Google Scholar 

  54. Dumont-Girard, F., Roux, E., van Lier, R. A., et al. (1998) Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 92, 4464–4471.

    PubMed  CAS  Google Scholar 

  55. Hakim, F. T., Cepeda, R., Kaimei, S., et al. (1997) Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90, 3789–3798.

    PubMed  CAS  Google Scholar 

  56. Muraro, P. A., Douek, D. C., Packer, A., et al. (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 201, 805–816.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang, H., Chua, K. S., Guimond, M., et al. (2005) Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat. Med. 11, 1238–1243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hakim, F.T., Gress, R.E. (2007). Thymic Involution. In: Fairchild, P.J. (eds) Immunological Tolerance. Methods in Molecular Biology™, vol 380. Humana Press. https://doi.org/10.1007/978-1-59745-395-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-395-0_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-652-8

  • Online ISBN: 978-1-59745-395-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics