Skip to main content

Selecting Single-Nucleotide Polymorphisms for Association Studies With SNPbrowser™ Software

  • Protocol
Linkage Disequilibrium and Association Mapping

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 376))

Abstract

The design of genetic association studies using single-nucleotide polymorphisms (SNPs) requires the selection of subsets of the variants providing high statistical power at a reasonable cost. SNPs must be selected to maximize the probability that a causative mutation is in linkage disequilibrium (LD) with at least one marker genotyped in the study. The HapMap Project performed a genome-wide survey of genetic variation with over 3 million SNPs typed in four populations, providing a rich resource to inform the design of association studies. A number of strategies have been proposed for the selection of SNPs based on observed LD, including construction of metric LD maps and the selection of haplotype-tagging SNPs. Power calculations are important at the study design stage to ensure successful results. Integrating these methods and annotations can be challenging: the algorithms required to implement these methods are complex to deploy, and all the necessary data and annotations are deposited in disparate databases. Here, we review the typical workflows for the selection of markers for association studies utilizing the SNPbrowser™ software, a freely available, stand-alone application that incorporates the HapMap database together with gene and SNP annotations. Selected SNPs are screened for their conversion potential to genotyping platforms, expediting the set up of genetic studies with an increased probability of success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reich, D. E., Cargill, M., Bolk, S., et al. (2001) Linkage disequilibrium in the human genome. Nature 411, 199–204.

    Article  CAS  PubMed  Google Scholar 

  2. De La Vega, F. M., Isaac, H., Collins, A., et al. (2005) The linkage disequilibrium maps of three human chromosomes across four populations reflect their demographic history and a common underlying recombination pattern. Genome Res. 15, 454–462.

    Article  Google Scholar 

  3. Consortium, T. I. H. (2005) A haplotype map of the human genome. Nature 437, 1299–1320.

    Article  Google Scholar 

  4. Gabriel, S. B., Schaffner, S. F., Nguyen, H., et al. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  5. Avi-Itzhak, H. I., Su, X., and De La Vega, F. M. (2003) Selection of minimum subsets of single nucleotide polymorphisms to capture haplotype block diversity. In: Pacific Symposium on Biocomputing, (Altman, R. B., et al., eds.),World Scientific Press, Lihue, Hawaii, pp. 466–477.

    Google Scholar 

  6. Byng, M. C., Whittaker, J. C., Cuthbert, A. P., Mathew, C. G., and Lewis, C. M. (2003) SNP subset selection for genetic association studies. Ann. Hum. Genet. 67, 543–556.

    Article  CAS  PubMed  Google Scholar 

  7. Carlson, C. S., Eberle, M. A., Rieder, M. J.,Yi,Q., Kruglyak, L., and Nickerson, D. A. (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74, 106–120.

    Article  CAS  PubMed  Google Scholar 

  8. Hampe, J., Schreiber, S., and Krawczak, M. (2003) Entropy-based SNP selection for genetic association studies. Hum. Genet. 114, 36–43.

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, G. C., Esposito, L., Barratt, B. J., et al. (2001) Haplotype tagging for the identification of common disease genes. Nat. Genet. 29, 233–237.

    Article  CAS  PubMed  Google Scholar 

  10. Ke, X. and Cardon, L. R. (2003) Efficient selective screening of haplotype tag SNPs. Bioinformatics 19, 287–288.

    Article  CAS  PubMed  Google Scholar 

  11. Sebastiani, P., Lazarus, R., Weiss, S. T., Kunkel, L. M., Kohane, I. S., and Ramoni, M. F. (2003) Minimal haplotype tagging. Proc. Natl. Acad. Sci. USA 100, 9900–9905.

    Article  CAS  PubMed  Google Scholar 

  12. Stram, D. O., Haiman, C. A., Hischhorn, J. N., et al. (2003) Choosing haplotypetagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum. Hered. 55, 27–36.

    Article  PubMed  Google Scholar 

  13. Weale, M. E., Depondt, C., Macdonald, S. J., et al. (2003) Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A: implications for linkage-disequilibrium gene mapping. Am. J. Hum. Genet. 73, 551–565.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, K., Sun, F., Waterman, M. S., and Chen, T. (2003) Haplotype block partition with limited resources and applications to human chromosome 21 haplotype data. Am. J. Hum. Genet. 73, 63–73.

    Article  CAS  PubMed  Google Scholar 

  15. Horne, B. D. and Camp, N. J. (2004) Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation. Genet. Epidemiol. 26, 11–21.

    Article  PubMed  Google Scholar 

  16. Hu, X., Schrodi, S. J., Ross, D. A., and Cargill, M. (2004) Selecting tagging SNPs for association studies using power calculations from genotype data. Hum. Hered. 57, 156–70.

    Article  CAS  PubMed  Google Scholar 

  17. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., and Hirschhorn, J. N. (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33, 177–182.

    Article  CAS  PubMed  Google Scholar 

  18. De La Vega, F. M., Dailey, D., Ziegle, J., Williams, J., Madden, D., and Gilbert, D. A. (2002) New generation pharmacogenomic tools: a SNP linkage disequilibrium map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies. Biotechniques Suppl, 48–50.

    Google Scholar 

  19. De la Vega, F. M., Lazaruk, K. D., Rhodes, M. D., and Wenz, M. H. (2005) Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Mutat. Res. 573, 111–135.

    PubMed  Google Scholar 

  20. Maniatis, N., Collins, A., Xu, C. F., et al. (2002) The first linkage disequilibrium (LD) maps: delineation of hot and cold blocks by diplotype analysis. Proc. Natl. Acad. Sci. USA 99, 2228–2233.

    Article  CAS  PubMed  Google Scholar 

  21. Schwartz, R., Halldorsson, B. V., Bafna, V., Clark, A. G., and Istrail, S. (2003) Robustness of inference of haplotype block structure. J. Comput. Biol. 10, 13–19.

    Article  CAS  PubMed  Google Scholar 

  22. Halldorsson, B. V., Istrail, S., and De La Vega, F. M. (2004) Optimal selection of SNP markers for disease association studies. Hum. Hered. 58, 190–202.

    Article  CAS  PubMed  Google Scholar 

  23. De La Vega, F. M., Gordon, D., Su, X., et al. (2005) Gene-centric power and sample size calculations for genetic case/control studies using empirical genotype data from dense SNP maps. Hum. Hered. 60, 46–60.

    Google Scholar 

  24. Collins, A., Lau, W., and De La Vega, F. M. (2004) Mapping genes for common diseases: the case for genetic (LD) maps. Hum. Hered. 58, 2–9.

    Article  PubMed  Google Scholar 

  25. Thomas, P. D. and Kejariwal, A. (2004) Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc. Natl. Acad. Sci. USA 101, 15,398–15,403.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

De La Vega, F.M. (2007). Selecting Single-Nucleotide Polymorphisms for Association Studies With SNPbrowser™ Software. In: Collins, A.R. (eds) Linkage Disequilibrium and Association Mapping. Methods in Molecular Biology™, vol 376. Humana Press. https://doi.org/10.1007/978-1-59745-389-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-389-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-669-6

  • Online ISBN: 978-1-59745-389-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics