Skip to main content

Molecular Modeling and Simulation of G-Quadruplexes and Quadruplex-Ligand Complexes

  • Protocol
  • First Online:
G-Quadruplex DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 608))

Abstract

Methods for the molecular modeling and simulation of G-quadruplex structures and their drug/ligand complexes are discussed, and a range of protocols is presented for undertaking a variety of tasks including model-building, ligand docking, dynamics simulation, continuum solvent modeling, energetic calculations, principal component analysis, and quantum chemical computations. The scope and limitations of these approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burge S, Parkinson GP, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  PubMed  Google Scholar 

  2. Davies JT (2004) G-quartets 40 years later: from 5’-GMP to molecular biology and supramolecular chemistry. Angew Chem Intl Edit 43:668–698

    Article  Google Scholar 

  3. Neidle S, Parkinson GN (2008) Quadruplex DNA crystal structures and drug design. Biochimie 90:1184–1196

    Article  CAS  PubMed  Google Scholar 

  4. Webba da Silva M (2007) Geometric formalism for DNA quadruplex folding. Chemistry 13:9738–9745

    Article  CAS  PubMed  Google Scholar 

  5. Hazel P, Huppert J, Balasubramanian S, Neidle S (2004) Loop-length-dependent folding of G-quadruplexes. J Amer Chem Soc 126:16405–16415

    Article  CAS  Google Scholar 

  6. Phan AT, Kuryavyi V, Burge S, Neidle S, Patel DJ (2007) Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J Amer Chem Soc 129:4386–4392

    Article  CAS  Google Scholar 

  7. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916

    Article  CAS  PubMed  Google Scholar 

  8. Todd AK, Johnston M, Neidle S (2005) Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res 33:2901–2907

    Article  CAS  PubMed  Google Scholar 

  9. Huppert JL, Balasubramanian S (2006) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  PubMed  Google Scholar 

  10. Sun D, Thompson BE, Cathers M, Salazar SM, Kerwin JO, Trent TC, Jenkins SN, Hurley LH (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116

    Article  CAS  PubMed  Google Scholar 

  11. Neidle S, Parkinson GN (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discovery 1:383–393

    Article  CAS  Google Scholar 

  12. Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nature Rev Drug Discovery 5:577–584

    Article  CAS  Google Scholar 

  13. Oganesian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. Bioessays 29:155–165

    Article  CAS  PubMed  Google Scholar 

  14. De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL (2008) Targeting telomeres and telomerase. Biochimie 90:131–155

    Article  PubMed  Google Scholar 

  15. Monchaud D, Teulade-Fichou MP (2008) A hitchhiker’s guide to G-quadruplex ligands. Org Biomol Chem 6:627–636

    Article  CAS  PubMed  Google Scholar 

  16. Clark GR, Pytel PD, Squire CJ, Neidle S (2003) Structure of the first parallel DNA quadruplex-drug complex. J Amer Chem Soc 125:4066–4067

    Article  CAS  Google Scholar 

  17. Haider SM, Parkinson GN, Neidle S (2003) Structure of a G-quadruplex-ligand complex. J Mol Biol 326:117–125

    Article  CAS  PubMed  Google Scholar 

  18. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  19. Parkinson GN, Ghosh R, Neidle S (2007) Structural basis for binding of porphyrin to human telomeres. Biochemistry 46:2390–2397

    Article  CAS  PubMed  Google Scholar 

  20. Campbell NH, Parkinson GN, Reszka AP, Neidle S (2008) Structural basis of DNA quadruplex recognition by an acridine drug. J Amer Chem Soc 130:6722–6724

    Article  CAS  Google Scholar 

  21. Phan AT, Kuryavyi V, Gaw HY, Patel DJ (2005) Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nature Chem Biol 1:167–173

    Article  CAS  Google Scholar 

  22. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  Google Scholar 

  23. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Amer Chem Soc 128:9963–9970

    Article  CAS  Google Scholar 

  24. Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res 34:5715–5719

    Article  CAS  PubMed  Google Scholar 

  25. Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–4940

    Article  CAS  PubMed  Google Scholar 

  26. Šponer J, Špačková N (2007) Molecular dynamics simulations and their application to four-stranded DNA. Methods 43:278–290

    Article  PubMed  Google Scholar 

  27. Yang L, Tan CH, Hsieh MJ, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) New-generation amber united-atom force field. J Phys Chem B 110:13166–13176

    Article  CAS  PubMed  Google Scholar 

  28. Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104

    Article  CAS  Google Scholar 

  29. Goodfellow JM, Levy R (1998) Theory and simulation. Curr Opin Struct Biol 8:209–210

    Article  CAS  Google Scholar 

  30. Sagui C, Darden TA (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28:155–179

    Article  CAS  PubMed  Google Scholar 

  31. Norberg J, Nilsson L (2000) On the truncation of long-range electrostatic interactions in DNA. Biophys J 79:1537–1553

    Article  CAS  PubMed  Google Scholar 

  32. Steinbach PJ, Brooks BR (1994) New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem 15:667–683

    Article  CAS  Google Scholar 

  33. Ross WS, Hardin CC (1994) Ion induced stabilization of the G-DNA quadruplex: free energy perturbation studies. J Amer Chem Soc 116:6070–6680

    Article  CAS  Google Scholar 

  34. York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic ­interactions in simulations of macromolecular ­crystals: A comparison of the Ewald and truncated list methods. J Chem Phys 99:8345–8348

    Article  CAS  Google Scholar 

  35. Cheatham TE III, Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular dynamics simulations on solvated biomolecular systems: the particle mesh Ewald method leads to stable trajectories of DNA, RNA and proteins. J Amer Chem Soc 117:4193–4194

    Article  CAS  Google Scholar 

  36. Hunenberger PH, McCammon JA (1999) Ewald artifacts in computer simulations of ionic salvation and ion-ion interaction: a continuum electrostatics study. J Chem Phys 110:1856–1872

    Article  CAS  Google Scholar 

  37. MacKerell Jr., A. D., Brooks, B., Brooks III, C. L., Nilsson, L., Roux, B., Won, Y. and Karplus, M. (1998) CHARMM: The energy function and its parameterization with an overview of the program. In: The Encyclopedia of Computational Chemistry (J. Wiley and Sons). 1, 271–277.

    Google Scholar 

  38. Soares TA, Hunenberger PH, Kastenholz MA, Krautler V, Lenz T, Lins RD, Oostenbrink C, Van Gunsteren WF (2005) An improved nucleic acid parameter set for the GROMOS force field. J Comput Chem 26:725–737

    Article  CAS  PubMed  Google Scholar 

  39. Van Wynsberghe AW, Cui Q (2005) Comparison of mode analyses at different resolutions applied to nucleic acid systems. Biophys J 89:2939–2949

    Article  PubMed  Google Scholar 

  40. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M (2007) Refinement of AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophys J 92:3817–3829

    Article  CAS  PubMed  Google Scholar 

  41. Haider S, Parkinson GN, Neidle S (2002) Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J Mol Biol 320:189–200

    Article  CAS  PubMed  Google Scholar 

  42. Gallagher T, Taylor MJ, Ernst SR, Hackert ML, Poonia NS (1991) Dipotassium and sodium/potassium crystalline picrate complexes with the crown ether. Acta Crystallogr B 47:362–368

    Article  PubMed  Google Scholar 

  43. Phillips K, Dauter Z, Murchie AI, Lilley DM, Luisi B (1997) The crystal structure of a parallel-stranded guanine tetraplex at 0.94 Å resolution. J Mol Biol 273:171–182

    Article  CAS  PubMed  Google Scholar 

  44. Schultze P, Smith FW, Feigon J (1994) Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure 2:221–233

    Article  CAS  PubMed  Google Scholar 

  45. Hud NV, Schultze P, Sklenar V, Feigon J (1999) Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex. J Mol Biol 285:233–243

    Article  CAS  PubMed  Google Scholar 

  46. Cavallari M, Calzolari A, Garbesi A, Di Felice R (2006) Stability and migration of metal ions in G4-wires by molecular dynamics simulations. J Phys Chem 110:26337–26348

    CAS  Google Scholar 

  47. Ponomarev SY, Thayer KM, Beveridge DL (2004) Ion motions in molecular dynamics simulations in DNA. Proc Natl Acad Sci USA 101:14771–14775

    Article  CAS  PubMed  Google Scholar 

  48. Haider S, Parkinson GN, Neidle S (2008) Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys J 95:296–311

    Article  CAS  PubMed  Google Scholar 

  49. Spackova N, Berger I, Sponer J (2001) Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations. J Amer Chem Soc 123:3295–3307

    Article  CAS  Google Scholar 

  50. Hazel P, Parkinson GN, Neidle S (2006) Predictive modeling of topology and loop variations in dimeric DNA quadruplex structures. Nucleic Acid Res 34:2117–2127

    Article  CAS  PubMed  Google Scholar 

  51. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Amer Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  52. Cheatham TE III, Cieplak P, Kollman PA (1999) A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn 16:845–862

    CAS  PubMed  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

  54. Mazur AK (1998) Accurate DNA dynamics without accurate long-range electrostatics. J Amer Chem Soc 120:10928–10937

    Article  CAS  Google Scholar 

  55. Bashford D, Case D (2000) Generalised Born models of macromolecular solvation effects. Ann Rev Phys Chem 51:129–152

    Article  CAS  Google Scholar 

  56. Fadrna E, Spackova N, Stefl R, Koca J, Cheatham TE III, Sponer J (2004) Molecular dynamics simulations of guanine quadruplex loops: advances and force field limitations. Biophys J 87:227–242

    Article  CAS  PubMed  Google Scholar 

  57. BIOSYM. San Diego, CA.

    Google Scholar 

  58. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  59. Kelly LA, Gardner SP, Sutcliffe MJ (1996) An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng 9:1063–1065

    Article  Google Scholar 

  60. Meyer T, Ferrer-Costa C, Perez A, Rueda M, Bidon-Chanal A, Luque FJ, Laughton CA, Orozco M (2006) Essential dynamics: A tool for efficient trajectory compression and management. J Chem Theory Comp 2:251–258

    Article  CAS  Google Scholar 

  61. Boys SF, Bernardi F (1970) Calculations of small molecular interaction by the difference of separate total energies. Some procedures with reduced error. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  62. Becke AD (1993) Density function thermochemistry. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  63. Gu J, Leszczynski J (1999) Influence of the oxygen at the C8 position on the intramolecular proton transfer in C8-oxidative guanine. J Phys Chem 103:577–584

    CAS  Google Scholar 

  64. Sponer J, Leszczynski J, Hobza P (1996) Structures and energies of hydrogen-bonded DNA base pairs. A nonempirical study with inclusion of electron correlation. J Phys Chem 100:1965–1974

    Article  CAS  Google Scholar 

  65. Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11:236–242

    Article  CAS  PubMed  Google Scholar 

  66. At www.tripos.com

  67. Pacios LF, Christiansen PA (1985) Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar. J Chem Phys 82:2664–2671

    Article  Google Scholar 

  68. Hurley MM, Pacios LF, Christiansen PA (1986) Ab initio relativistic effective potentials with spin-orbit operators. II. K through Kr. J Chem Phys 84:6840–6853

    Article  CAS  Google Scholar 

  69. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004

    Google Scholar 

  70. Chatasinski G, Szesniak M (1994) Origins of structure and energetics of van der Waals clusters from ab initio calculations. Chem Rev 94:1723–1765

    Article  Google Scholar 

  71. Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE III, Kulinski T, Sponer J (2009) Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields J Chem Theory Comput 5:2514–2530

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Neidle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Haider, S., Neidle, S. (2010). Molecular Modeling and Simulation of G-Quadruplexes and Quadruplex-Ligand Complexes. In: Baumann, P. (eds) G-Quadruplex DNA. Methods in Molecular Biology, vol 608. Humana Press. https://doi.org/10.1007/978-1-59745-363-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-363-9_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-950-5

  • Online ISBN: 978-1-59745-363-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics