Skip to main content

Bone Structure, Development and Bone Biology

  • Chapter
  • First Online:
Bone Pathology

Abstract

The skeleton serves as an internal structural support system for vertebrates. It has mechanisms to grow and change in shape and size to suit varying stressors including the ability to resist the mechanical forces. In addition, bone is a major source of inorganic ions, and actively participates in the body’s calcium/phosphate balance.

Bone tissue is continuously formed and remodeled throughout life. Initially, the bone achieves its increase in size and shape through growth (increase in size) and a complicated process known as skeletal modeling. In late childhood and adulthood there is continuous renewal of the skeleton via a process termed remodeling. Both modeling and remodeling require two separate processes namely bone resorption and bone formation to occur simultaneously to be effective. This requirement is known as “coupling”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cowin SC. Tissue growth and remodeling. Annu Rev Biomed Eng 2004;6:77–107.

    PubMed  CAS  Google Scholar 

  2. Havers. http://www.biology-online.org/dictionary/Haversian_system. 1691.

  3. Brown JH, DeLuca SA. Growth plate injuries: Salter-Harris classification. Am Fam Physician 1992;46(4):1180–4.

    PubMed  CAS  Google Scholar 

  4. Duncan CP, Shim SSJ. Edouard Samson Address. The autonomic nerve supply of bone. An experimental study of the intraosseous adrenergic nervi vasorum in the rabbit. J Bone Joint Surg Br 1977;59(3):323–30.

    PubMed  CAS  Google Scholar 

  5. Bliziotes M, Gunness M, Eshleman A, Wiren K. The role of dopamine and serotonin in regulating bone mass and strength: studies on dopamine and serotonin transporter null mice. J Musculoskelet Neuronal Interact 2002;2(3):291–5.

    PubMed  CAS  Google Scholar 

  6. Tam J, Ofek O, Fride E, et al. Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 2006;70(3):786–92.

    PubMed  CAS  Google Scholar 

  7. Idris AI, van’t Hof RJ, Greig IR, et al. Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 2005;11(7):774–9.

    PubMed  CAS  Google Scholar 

  8. Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol 1993;110(1):39–54.

    PubMed  CAS  Google Scholar 

  9. Hohling HJ, Barckhaus RH, Drefting ER, Quint P, Athoff J. Quantitative electron microscopy of the early stages of cartilage mineralization. Metab Bone Dis Res 1978;1:109–14.

    Google Scholar 

  10. Khan SN, Bostrom MP, Lane JM. Bone growth factors. Orthop Clin North Am 2000;31(3):375–88.

    PubMed  CAS  Google Scholar 

  11. Rodan GA. Control of bone formation and resorption: biological and clinical perspective. J Cell Biochem Suppl 1998;30/31:55–61.

    Google Scholar 

  12. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89(5):765–71.

    PubMed  CAS  Google Scholar 

  13. Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108(1):17–29.

    PubMed  CAS  Google Scholar 

  14. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89(5):755–64.

    PubMed  CAS  Google Scholar 

  15. Ducy P. Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 2000;219(4):461–71.

    PubMed  CAS  Google Scholar 

  16. Ducy P, Karsenty G. The family of bone morphogenetic proteins. Kidney Int 2000;57(6):2207–14.

    PubMed  CAS  Google Scholar 

  17. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100(2):197–207.

    PubMed  CAS  Google Scholar 

  18. Aubin JE, Triffit JT. Mesenchymal Stem Cells and Osteoblast Differentiation In: J. P. Bilezikian, L. G. Raisz, G. A. Rodan, Eds. Principles of Bone Biology. 2nd ed. San Diego: Academic Press; 2002:59–81.

    Google Scholar 

  19. Tezuka K, Takeshita S, Hakeda Y, Kumegawa M, Kikuno R, Hashimoto-Gotoh T. Isolation of mouse and human cDNA clones encoding a protein expressed specifically in osteoblasts and brain tissues. Biochem Biophys Res Commun 1990;173(1):246–51.

    PubMed  CAS  Google Scholar 

  20. Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H. Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J Biol Chem 1994;269(17):12999–3004.

    PubMed  CAS  Google Scholar 

  21. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006;38(11):1248–50.

    PubMed  CAS  Google Scholar 

  22. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter Gene SLC34A3. Am J Hum Genet 2006;78(2):193–201.

    PubMed  CAS  Google Scholar 

  23. Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 2005;19(13):1842–4.

    PubMed  CAS  Google Scholar 

  24. Poole KE, Reeve J. Parathyroid hormone – a bone anabolic and catabolic agent. Curr Opin Pharmacol 2005;5(6):612–7.

    PubMed  CAS  Google Scholar 

  25. Oster G. Cell Motility and Tissue Morphogenesis. In: W. D. Stien andF. Bronner, Eds. Cell Shape: Determinants, Regulation and Regulatory Role. San Diego: Academic Press; 1989:33–61.

    Google Scholar 

  26. Takahashi N, Udagawa N, Takami M, Suda T. Cells of Bone, Osteoclast Generation. In: J. P. Bilezikian, L. G. Raisz, G. A. Rodan, Eds. Principles of Bone Biology 2nd ed. 2002:109-26.

    Google Scholar 

  27. Watanabe H, Yanagisawa T, Sasaki J. Cytoskeletal architecture of rat calvarial osteoclasts: microfilaments, and intermediate filaments, and nuclear matrix as demonstrated by detergent perfusion. Anat Rec 1995;243(2):165–74.

    PubMed  CAS  Google Scholar 

  28. Horne WC. Toward a more complete molecular description of the osteoclast. Bone 1995;17(2):107–9.

    PubMed  CAS  Google Scholar 

  29. Sakai D, Tong HS, Minkin C. Osteoclast molecular phenotyping by random cDNA sequencing. Bone 1995;17(2):111–9.

    PubMed  CAS  Google Scholar 

  30. Roodman GD, Kurihara N, Ohsaki Y, et al Interleukin 6. A potential autocrine/paracrine factor in Paget’s disease of bone. J Clin Investig 1992;89(1):46–52.

    PubMed  CAS  Google Scholar 

  31. Ohsaki Y, Takahashi S, Scarcez T, et al. Evidence for an autocrine/paracrine role for interleukin-6 in bone resorption by giant cells from giant cell tumors of bone. Endocrinology 1992;131(5):2229–34.

    PubMed  CAS  Google Scholar 

  32. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332(5):305–11.

    PubMed  CAS  Google Scholar 

  33. Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997;272(40):25190–4.

    PubMed  CAS  Google Scholar 

  34. Yasuda H, Shima N, Nakagawa N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998;139(3):1329–37.

    PubMed  Google Scholar 

  35. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95(7):3597–602.

    PubMed  CAS  Google Scholar 

  36. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93(2):165–76.

    PubMed  CAS  Google Scholar 

  37. Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998;12(9):1260–8.

    PubMed  CAS  Google Scholar 

  38. Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999;402(6759):304–9.

    PubMed  CAS  Google Scholar 

  39. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397(6717):315–23.

    PubMed  CAS  Google Scholar 

  40. Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999;13(18):2412–24.

    PubMed  CAS  Google Scholar 

  41. Hughes AE, Ralston SH, Marken J, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 2000;24(1):45–8.

    PubMed  CAS  Google Scholar 

  42. Galibert L, Tometsko ME, Anderson DM, Cosman D, Dougall WC. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 1998;273(51):34120–7.

    PubMed  CAS  Google Scholar 

  43. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 1998;273(32):20551–5.

    PubMed  CAS  Google Scholar 

  44. Ohishi M, Matsumura Y, Aki D, et al. Suppressors of cytokine signaling-1 and -3 regulate osteoclastogenesis in the presence of inflammatory cytokines. J Immunol 2005;174(5):3024–31.

    PubMed  CAS  Google Scholar 

  45. Hayashi T, Kaneda T, Toyama Y, Kumegawa M, Hakeda Y. Regulation of receptor activator of NF-kappa B ligand-induced osteoclastogenesis by endogenous interferon-beta (INF-beta) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs- in IFN-beta-inhibited osteoclast formation. J Biol Chem 2002;277(31):27880–6.

    PubMed  CAS  Google Scholar 

  46. Takayanagi H, Ogasawara K, Hida S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000;408(6812):600–5.

    PubMed  CAS  Google Scholar 

  47. Huang W, O’Keefe RJ, Schwarz EM. Exposure to receptor-activator of NFkappaB ligand renders pre-osteoclasts resistant to IFN-gamma by inducing terminal differentiation. Arthritis Res Ther 2003;5(1):R49–R59.

    PubMed  CAS  Google Scholar 

  48. Takayanagi H, Kim S, Matsuo K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002;416(6882):744–9.

    PubMed  CAS  Google Scholar 

  49. Takayanagi H, Sato K, Takaoka A, Taniguchi T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 2005;208:181–93.

    PubMed  CAS  Google Scholar 

  50. Asagiri M, Sato K, Usami T, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005;202(9):1261–9.

    PubMed  CAS  Google Scholar 

  51. Ouyang W, Lohning M, Gao Z, et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000;12(1):27–37.

    PubMed  CAS  Google Scholar 

  52. Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002;3(6):889–901.

    PubMed  CAS  Google Scholar 

  53. Kaifu T, Nakahara J, Inui M, et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Investig 2003;111(3):323–32.

    PubMed  CAS  Google Scholar 

  54. Koga T, Inui M, Inoue K, et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004;428(6984):758–63.

    PubMed  CAS  Google Scholar 

  55. Mocsai A, Humphrey MB, Van Ziffle JA, et al. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci USA 2004;101(16):6158–63.

    PubMed  CAS  Google Scholar 

  56. Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem 2005;280(38):32905–13.

    PubMed  CAS  Google Scholar 

  57. Kim K, Kim JH, Lee J, et al. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J Biol Chem 2005;280(42):35209–16.

    PubMed  CAS  Google Scholar 

  58. Ono K, Kaneko H, Choudhary S, et al. Biphasic effect of prostaglandin E2 on osteoclast formation in spleen cell cultures: role of the EP2 receptor. J Bone Miner Res 2005;20(1):23–9.

    PubMed  CAS  Google Scholar 

  59. Sela J, Amir D, Schwartz Z, Weinberg H. Ultrastructural tissue morphometry of the distribution of extracellular matrix vesicles in remodeling rat tibial bone six days after injury. Acta Anat 1987;128(4):295–300.

    PubMed  CAS  Google Scholar 

  60. Horton WA. Biology of bone growth. Growth Genet Horm 1990;6(2):1–5.

    Google Scholar 

  61. Cserjesi P, Brown D, Lyons GE, Olson EN. Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol 1995;170(2):664–78.

    PubMed  CAS  Google Scholar 

  62. LeClair EE, Bonfiglio L, Tuan RS. Expression of the paired-box genes Pax-1 and Pax-9 in limb skeleton development. Dev Dyn 1999;214(2):101–15.

    PubMed  CAS  Google Scholar 

  63. Cserjesi P, Brown D, Ligon KL, et al. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development 1995;121(4):1099–110.

    PubMed  CAS  Google Scholar 

  64. Oberlender SA, Tuan RS. Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhes Commun 1994;2(6):521–37.

    PubMed  CAS  Google Scholar 

  65. Hall BK, Miyake T. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol 1995;39(6):881–93.

    PubMed  CAS  Google Scholar 

  66. Wright E, Hargrave MR, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet 1995;9(1):15–20.

    PubMed  CAS  Google Scholar 

  67. Bruder SP, Caplan AI. Discrete stages within the osteogenic lineage are revealed by alterations in the cell surface architecture of embryonic bone cells. Connect Tissue Res 1989;20(1–4):73–9.

    PubMed  CAS  Google Scholar 

  68. Hatori M, Klatte KJ, Teixeira CC, Shapiro IM. End labeling studies of fragmented DNA in the avian growth plate: evidence of apoptosis in terminally differentiated chondrocytes. J Bone Miner Res 1995;10(12):1960–8.

    PubMed  CAS  Google Scholar 

  69. Kobayashi T, Kronenberg H. Minireview: transcriptional regulation in development of bone. Endocrinology 2005;146(3):1012–7.

    PubMed  CAS  Google Scholar 

  70. Praul CA, Ford BC, Leach RM. Effect of fibroblast growth factors 1, 2, 4, 5, 6, 7, 8, 9, and 10 on avian chondrocyte proliferation. J Cell Biochem 2002;84(2):359–66.

    PubMed  Google Scholar 

  71. Yakar S, Liu JL, Stannard B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 1999;96(13):7324–9.

    PubMed  CAS  Google Scholar 

  72. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev 1998;19(1):55–79.

    PubMed  CAS  Google Scholar 

  73. Weiss RE, Refetoff S. Effect of thyroid hormone on growth. Lessons from the syndrome of resistance to thyroid hormone. Endocrinol Metab Clin North Am 1996;25(3):719–30.

    PubMed  CAS  Google Scholar 

  74. Faustini-Fustini M, Rochira V, Carani C. Oestrogen deficiency in men: where are we today?Eur J Endocrinol/Eur Feder Endocr Soc 1999;140(2):111–29.

    CAS  Google Scholar 

  75. Boyan BD, Schwartz Z, Swain LD, Bonewald LF, Khare A. Regulation of matrix vesicle metabolism by vitamin D metabolites. Connect Tissue Res 1989;22(1–4):3–16; discussion 53–61.

    PubMed  CAS  Google Scholar 

  76. Canalis E. Clinical review 83: mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 1996;81(10):3441–7.

    PubMed  CAS  Google Scholar 

  77. Millan FA, Denhez F, Kondaiah P, Akhurst RJ. Embryonic gene expression patterns of TGF beta 1, beta 2 and beta 3 suggest different developmental functions in vivo. Development 1991;111(1):131–43.

    PubMed  CAS  Google Scholar 

  78. Philbrick WM, Wysolmerski JJ, Galbraith S, et al. Defining the roles of parathyroid hormone-related protein in normal physiology. Physiol Rev 1996;76(1):127–73.

    PubMed  CAS  Google Scholar 

  79. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996;273(5275):613–22.

    PubMed  CAS  Google Scholar 

  80. Bellus GA, Hefferon TW, Ortiz de Luna RI, et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 1995;56(2):368–73.

    PubMed  CAS  Google Scholar 

  81. Bellus GA, McIntosh I, Smith EA, et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 1995;10(3):357–9.

    PubMed  CAS  Google Scholar 

  82. Serra R, Karaplis A, Sohn P. Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-βeta) on endochondral bone formation. J Cell Biol 1999;145(4):783–94.

    PubMed  CAS  Google Scholar 

  83. St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999;13(16):2072–86.

    PubMed  CAS  Google Scholar 

  84. Chen L, Li C, Qiao W, Xu X, Deng C. A Ser(365) → Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001;10(5):457–65.

    PubMed  CAS  Google Scholar 

  85. Caplan AI. Bone development. Ciba Found Symp 1988;136:3–21.

    PubMed  CAS  Google Scholar 

  86. Larsen WJ. Human Embryology. Churchil Livingstone Inc; 1997.

    Google Scholar 

  87. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. Toward a molecular understanding of skeletal development. Cell 1995;80(3):371–8.

    PubMed  CAS  Google Scholar 

  88. Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell 1997;90(6):979–90.

    PubMed  CAS  Google Scholar 

  89. Schwabe JW, Rodriguez-Esteban C, Izpisua Belmonte JC. Limbs are moving: where are they going? Trends Genet 1998;14(6):229–35.

    PubMed  CAS  Google Scholar 

  90. Martin GR. The roles of FGFs in the early development of vertebrate limbs. Genes Dev 1998;12(11):1571–86.

    PubMed  CAS  Google Scholar 

  91. Xu X, Weinstein M, Li C, Deng C. Fibroblast growth factor receptors (FGFRs) and their roles in limb development. Cell Tissue Res 1999;296(1):33–43.

    PubMed  CAS  Google Scholar 

  92. Krumlauf R. Hox genes in vertebrate development. Cell 1994;78(2):191–201.

    PubMed  CAS  Google Scholar 

  93. Church VL, Francis-West P. Wnt signalling during limb development. Int J Dev Biol 2002;46(7):927–36.

    PubMed  CAS  Google Scholar 

  94. McEwen DG, Peifer M. Wnt signaling: Moving in a new direction. Curr Biol 2000;10(15):R562–R564.

    PubMed  CAS  Google Scholar 

  95. Boutros M, Paricio N, Strutt DI, Mlodzik M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 1998;94(1):109–18.

    PubMed  CAS  Google Scholar 

  96. Kengaku M, Capdevila J, Rodriguez-Esteban C, et al. Distinct WNT pathways regulating AER formation and dorsoventral polarity in the chick limb bud. Science 1998;280(5367):1274–7.

    PubMed  CAS  Google Scholar 

  97. Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 1999;126(6):1211–23.

    PubMed  CAS  Google Scholar 

  98. Farrell ER, Munsterberg AE. csal1 is controlled by a combination of FGF and Wnt signals in developing limb buds. Dev Biol 2000;225(2):447–58.

    PubMed  CAS  Google Scholar 

  99. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 1992;195(4):231–72.

    PubMed  CAS  Google Scholar 

  100. Bellairs R, Osmond M. The Atlas of Chick Development. San Diego, California.: Academic Press; 1998.

    Google Scholar 

  101. Konigsberg IR. The Embryonic Origin of Muscle. In: A. G. Engel, B. Q. Banker, Eds. In: Myology. USA: McGraw-Hill Book Company; 1986.

    Google Scholar 

  102. Gilbert SF. Paraxial and Intermediate mesoderm. In: Developmental Biology. Sunderland, Massachusetts.: Sinauer Associates, Inc., Publishers; 2003.

    Google Scholar 

  103. Hatta K, Takagi S, Fujisawa H, Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 1987;120(1):215–27.

    PubMed  CAS  Google Scholar 

  104. Tajbakhsh S, Sporle R. Somite development: constructing the vertebrate body. Cell 1998;92(1):9–16.

    PubMed  CAS  Google Scholar 

  105. Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K, Takahashi Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev Cell 2004;7(3):425–38.

    PubMed  CAS  Google Scholar 

  106. Nowicki JL, Burke AC. Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development (Cambridge, England) 2000;127(19):4265–75.

    CAS  Google Scholar 

  107. Nowicki JL, Takimoto R, Burke AC. The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev 2003;120(2):227–40.

    PubMed  CAS  Google Scholar 

  108. Buckingham M, Bajard L, Daubas P, et al. Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential. Anat Embryol 2006;211(Suppl 1):51–6.

    PubMed  Google Scholar 

  109. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 2006;16(5):525–32.

    PubMed  CAS  Google Scholar 

  110. Smith CA, Tuan RS. Functional involvement of Pax-1 in somite development: somite dysmorphogenesis in chick embryos treated with Pax-1 paired-box antisense oligodeoxynucleotide. Teratology 1995;52(6):333–45.

    PubMed  CAS  Google Scholar 

  111. Pownall ME, Gustafsson MK, Emerson CP, Jr. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 2002;18:747–83.

    PubMed  CAS  Google Scholar 

  112. Brill G, Kahane N, Carmeli C, von Schack D, Barde YA, Kalcheim C. Epithelial-mesenchymal conversion of dermatome progenitors requires neural tube-derived signals: characterization of the role of neurotrophin-3. Development (Cambridge, England) 1995;121(8):2583–94.

    CAS  Google Scholar 

  113. Ikeya M, Takada S. Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development (Cambridge, England) 1998;125(24):4969–76.

    CAS  Google Scholar 

  114. Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A. Specification of the hypaxial musculature. Development (Cambridge, England) 1998;125(12):2235–49.

    CAS  Google Scholar 

  115. Marcelle C, Stark MR, Bronner-Fraser M. Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development (Cambridge, England) 1997;124(20):3955–63.

    CAS  Google Scholar 

  116. Brent AE, Tabin CJ. Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 2002;12(5):548–57.

    PubMed  CAS  Google Scholar 

  117. Sato Y, Yasuda K, Takahashi Y. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development (Cambridge, England) 2002;129(15):3633–44.

    CAS  Google Scholar 

  118. Morimoto M, Sasaki N, Oginuma M, et al. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development (Cambridge, England) 2007;134(8):1561–9.

    CAS  Google Scholar 

  119. Grifone R, Demignon J, Giordani J, et al. Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 2007;302(2):602–16.

    PubMed  CAS  Google Scholar 

  120. Ressoret J, De Crombrugghe B. Type I Collagen. In: J. P. Bilezikian, L. G. Raisz, G. A. Rodan, Eds. Principles of Bone Biology. 2nd ed. San Diego: Academic Press; 2002:189–210.

    Google Scholar 

  121. Robins SP, Brady JD. Collagen Cross-Linking and Metabolism In: J. P. Bilezikian, L. G. Raisz, G. A. Rodan, Eds. Principles of Bone Biology. 2nd ed. San Diego: Academic Press; 2002:211–23.

    Google Scholar 

  122. Buckwalter JA, Pita JC, Muller FJ, Nessler J. Structural differences between two populations of articular cartilage proteoglycan aggregates. J Orthop Res 1994;12(1):144–8.

    PubMed  CAS  Google Scholar 

  123. Royce PM, Barnes MJ. Failure of highly purified lysyl hydroxylase to hydroxylate lysyl residues in the non-helical regions of collagen. Biochem J 1985;230(2):475–80.

    PubMed  CAS  Google Scholar 

  124. Kobayashi Y, Takahashi N. [The pathophysiology of osteoporosis/osteopenia in gene mutant mice]. Clin Calcium 2006;16(2):311–18.

    PubMed  CAS  Google Scholar 

  125. Bonadio J, Ramirez F, Barr M. An intron mutation in the human alpha 1(I) collagen gene alters the efficiency of pre-mRNA splicing and is associated with osteogenesis imperfecta type II. J Biol Chem 1990;265(4):2262–8.

    PubMed  CAS  Google Scholar 

  126. Bonadio J, Saunders TL, Tsai E, et al. Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc Natl Acad Sci USA 1990;87(18):7145–9.

    PubMed  CAS  Google Scholar 

  127. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000;11(3):279–303.

    PubMed  CAS  Google Scholar 

  128. Denhardt DT, Noda M. Osteopontin expression and function: role in bone remodeling. J Cell Biochem Suppl 1998;30/31:92–102.

    Google Scholar 

  129. Fisher LW, McBride OW, Termine JD, Young MF. Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J Biol Chem 1990;265(4):2347–51.

    PubMed  CAS  Google Scholar 

  130. Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ. Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 2004;279(24):25455–63.

    PubMed  CAS  Google Scholar 

  131. Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP. Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 2004;279(24):25464–73.

    PubMed  CAS  Google Scholar 

  132. Purcell L, Gruia-Gray J, Scanga S, Ringuette M. Developmental anomalies of Xenopus embryos following microinjection of SPARC antibodies. J Exp Zool 1993;265(2):153–64.

    PubMed  CAS  Google Scholar 

  133. Bassuk JA, Birkebak T, Rothmier JD, et al. Disruption of the Sparc locus in mice alters the differentiation of lenticular epithelial cells and leads to cataract formation. Exp Eye Res 1999;68(3):321–31.

    PubMed  CAS  Google Scholar 

  134. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E. Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Investig 2000;105(7):915–23.

    PubMed  CAS  Google Scholar 

  135. Gokhale JP, Robey PG, Boskey AL. The Biochemistry of Bone. In: Osteoporosis. San Diego: Academic Press; 2001.

    Google Scholar 

  136. Boskey AL. Noncollagenous matrix proteins and their role in mineralization. Bone Miner 1989;6(2):111–23.

    PubMed  CAS  Google Scholar 

  137. Boskey AL. What’s in a name? The function of the mineralized tissue matrix proteins. J Dent Res 1989;68(2):159.

    PubMed  CAS  Google Scholar 

  138. Hynes RO. Fibronectin. New York: Springer-Verlag; 1990.

    Google Scholar 

  139. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993;119(4):1079–91.

    PubMed  CAS  Google Scholar 

  140. Georges-Labouesse EN, George EL, Rayburn H, Hynes RO. Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 1996;207(2):145–56.

    PubMed  CAS  Google Scholar 

  141. Schwarzbauer JE, Tamkun JW, Lemischka IR, Hynes RO. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 1983;35(2 Pt 1):421–31.

    PubMed  CAS  Google Scholar 

  142. Kornblihtt AR, Vibe-Pedersen K, Baralle FE. Human fibronectin: cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats. Nucleic Acids Res 1984;12(14):5853–68.

    PubMed  CAS  Google Scholar 

  143. Zardi L, Carnemolla B, Siri A, et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 1987;6(8):2337–42.

    PubMed  CAS  Google Scholar 

  144. Schwarzbauer JE, Patel RS, Fonda D, Hynes RO. Multiple sites of alternative splicing of the rat fibronectin gene transcript. EMBO J 1987;6(9):2573–80.

    PubMed  CAS  Google Scholar 

  145. Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K. Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 1997;139(1):295–307.

    PubMed  CAS  Google Scholar 

  146. Manabe R, Oh-e N, Sekiguchi K. Alternatively spliced EDA segment regulates fibronectin-dependent cell cycle progression and mitogenic signal transduction. J Biol Chem 1999;274(9):5919–24.

    PubMed  CAS  Google Scholar 

  147. Fukuda T, Yoshida N, Kataoka Y, et al. Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res 2002;62(19):5603–10.

    PubMed  CAS  Google Scholar 

  148. Chen H, Herndon ME, Lawler J. The cell biology of thrombospondin-1. Matrix Biol 2000;19(7):597–614.

    PubMed  CAS  Google Scholar 

  149. Alford AI, Hankenson KD. Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 2006;38(6):749–57.

    PubMed  CAS  Google Scholar 

  150. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 2002;14(5):608–16.

    PubMed  CAS  Google Scholar 

  151. Hankenson KD, Bain SD, Kyriakides TR, Smith EA, Goldstein SA, Bornstein P. Increased marrow-derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J Bone Miner Res 2000;15(5):851–62.

    PubMed  CAS  Google Scholar 

  152. Daci E, Everts V, Torrekens S, et al. Increased bone formation in mice lacking plasminogen activators. J Bone Miner Res 2003;18(7):1167–76.

    PubMed  CAS  Google Scholar 

  153. Bradham WG, Lewis JV, Sewell DH, Garrett A. Bullet embolus to the ascending aorta following a gunshot wound to the chest. J Tenn Med Assoc 1991;84(12):592–3.

    PubMed  CAS  Google Scholar 

  154. Brunner A, Chinn J, Neubauer M, Purchio AF. Identification of a gene family regulated by transforming growth factor-beta. DNA Cell Biol 1991;10(4):293–300.

    PubMed  CAS  Google Scholar 

  155. Ryseck RP, Macdonald-Bravo H, Mattei MG, Bravo R. Structure, mapping, and expression of fisp-12, a growth factor-inducible gene encoding a secreted cysteine-rich protein. Cell Growth Differ 1991;2(5):225–33.

    PubMed  CAS  Google Scholar 

  156. Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA. Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. J Biol Chem 1997;272(32):20275–82.

    PubMed  CAS  Google Scholar 

  157. Ying Z, King ML. Isolation and characterization of xnov, a Xenopus laevis ortholog of the chicken nov gene. Gene 1996;171(2):243–8.

    PubMed  CAS  Google Scholar 

  158. Xu J, Smock SL, Safadi FF, et al. Cloning the full-length cDNA for rat connective tissue growth factor: implications for skeletal development. J Cell Biochem 2000;77(1):103–15.

    PubMed  CAS  Google Scholar 

  159. Joliot V, Martinerie C, Dambrine G, et al. Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol 1992;12(1):10–21.

    PubMed  CAS  Google Scholar 

  160. Hashimoto Y, Shindo-Okada N, Tani M, et al. Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses in vivo tumor growth and metastasis of K-1735 murine melanoma cells. J Exp Med 1998;187(3):289–96.

    PubMed  CAS  Google Scholar 

  161. Pennica D, Swanson TA, Welsh JW, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 1998;95(25):14717–22.

    PubMed  CAS  Google Scholar 

  162. Kothapalli D, Grotendorst GR. CTGF modulates cell cycle progression in cAMP-arrested NRK fibroblasts. J Cell Physiol 2000;182(1):119–26.

    PubMed  CAS  Google Scholar 

  163. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 1999;20:189–206.

    PubMed  CAS  Google Scholar 

  164. Moussad EE, Brigstock DR. Connective tissue growth factor: what’s in a name?. Mol Genet Metab 2000;71(1–2):276–92.

    PubMed  CAS  Google Scholar 

  165. Oemar BS, Luscher TF. Connective tissue growth factor. Friend or foe? Arterioscler Thromb Vasc Biol 1997;17(8):1483–9.

    PubMed  CAS  Google Scholar 

  166. Sabe H, Hata A, Okada M, Nakagawa H, Hanafusa H. Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-Src. Proc Natl Acad Sci USA 1994;91(9):3984–8.

    PubMed  CAS  Google Scholar 

  167. O’Brien TP, Yang GP, Sanders L, Lau LF. Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol 1990;10(7):3569–77.

    PubMed  Google Scholar 

  168. Kim HS, Nagalla SR, Oh Y, Wilson E, Roberts CT, Jr., Rosenfeld RG. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci USA 1997;94(24):12981–6.

    PubMed  CAS  Google Scholar 

  169. Kireeva ML, Latinkic BV, Kolesnikova TV, et al. Cyr61 and Fisp12 are both ECM-associated signaling molecules: activities, metabolism, and localization during development. Exp Cell Res 1997;233(1):63–77.

    PubMed  CAS  Google Scholar 

  170. Holt GD, Pangburn MK, Ginsburg V. Properdin binds to sulfatide [Gal(3-SO4)beta 1–1 Cer] and has a sequence homology with other proteins that bind sulfated glycoconjugates. J Biol Chem 1990;265(5):2852–5.

    PubMed  CAS  Google Scholar 

  171. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett 1993;327(2):125–30.

    PubMed  CAS  Google Scholar 

  172. Dammeier J, Brauchle M, Falk W, Grotendorst GR, Werner S. Connective tissue growth factor: a novel regulator of mucosal repair and fibrosis in inflammatory bowel disease? Int J Biochem Cell Biol 1998;30(8):909–22.

    PubMed  CAS  Google Scholar 

  173. Nakanishi T, Kimura Y, Tamura T, et al. Cloning of a mRNA preferentially expressed in chondrocytes by differential display-PCR from a human chondrocytic cell line that is identical with connective tissue growth factor (CTGF) mRNA. Biochem Biophys Res Commun 1997;234(1):206–10.

    PubMed  CAS  Google Scholar 

  174. Duncan MR, Frazier KS, Abramson S, et al. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 1999;13(13):1774–86.

    PubMed  CAS  Google Scholar 

  175. Frazier KS, Grotendorst GR. Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol 1997;29(1):153–61.

    PubMed  CAS  Google Scholar 

  176. Arnott JA, Nuglozeh E, Rico MC, et al. Connective tissue growth factor (CTGF/CCN2) is a downstream mediator for TGF-βeta1-induced extracellular matrix production in osteoblasts. J Cell Physiol 2007;210(3):843–52.

    PubMed  CAS  Google Scholar 

  177. Nakanishi T, Nishida T, Shimo T, et al. Effects of CTGF/Hcs24, a product of a hypertrophic chondrocyte-specific gene, on the proliferation and differentiation of chondrocytes in culture. Endocrinology 2000;141(1):264–73.

    PubMed  CAS  Google Scholar 

  178. Chen CC, Chen N, Lau LF. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 2001;276(13):10443–52.

    PubMed  CAS  Google Scholar 

  179. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 1998;95(11):6355–60.

    PubMed  CAS  Google Scholar 

  180. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991;114(6):1285–94.

    PubMed  CAS  Google Scholar 

  181. Kothapalli D, Frazier KS, Welply A, Segarini PR, Grotendorst GR. Transforming growth factor beta induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factor-dependent signaling pathway. Cell Growth Differ 1997;8(1):61–8.

    PubMed  CAS  Google Scholar 

  182. Hishikawa K, Nakaki T, Fujii T. Connective tissue growth factor induces apoptosis via caspase 3 in cultured human aortic smooth muscle cells. Eur J Pharmacol 2000;392(1–2):19–22.

    PubMed  CAS  Google Scholar 

  183. Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Fujii T, Luscher TF. Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation 1999;100(20):2108–12.

    PubMed  CAS  Google Scholar 

  184. Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 1999;19(4):2958–66.

    PubMed  CAS  Google Scholar 

  185. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-βeta action on fibroblasts. Cytokine Growth Factor Rev 1997;8(3):171–9.

    PubMed  CAS  Google Scholar 

  186. Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 1993;4(6):637–45.

    PubMed  CAS  Google Scholar 

  187. Morin PJ. Beta-catenin signaling and cancer. Bioessays 1999;21(12):1021–30.

    PubMed  CAS  Google Scholar 

  188. Shakunaga T, Ozaki T, Ohara N, et al. Expression of connective tissue growth factor in cartilaginous tumors. Cancer 2000;89(7):1466–73.

    PubMed  CAS  Google Scholar 

  189. Yu C, Le AT, Yeger H, Perbal B, Alman BA. NOV (CCN3) regulation in the growth plate and CCN family member expression in cartilage neoplasia. J Pathol 2003;201(4):609–15.

    PubMed  CAS  Google Scholar 

  190. Hurvitz JR, Suwairi WM, Van Hul W, et al. Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 1999;23(1):94–8.

    PubMed  CAS  Google Scholar 

  191. Dunlop LL, Hall BK. Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis. Int J Dev Biol 1995;39(2):357–71.

    PubMed  CAS  Google Scholar 

  192. Hall BK, Miyake T. The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl) 1992;186(2):107–24.

    CAS  Google Scholar 

  193. Friedrichsen S, Heuer H, Christ S, et al. CTGF expression during mouse embryonic development. Cell Tissue Res 2003;312(2):175–88.

    PubMed  CAS  Google Scholar 

  194. Haider AS, Grabarek J, Eng B, et al. In vitro model of “wound healing” analyzed by laser scanning cytometry: accelerated healing of epithelial cell monolayers in the presence of hyaluronate. Cytometry A 2003;53(1):1–8.

    PubMed  Google Scholar 

  195. Hall B, Miyake T. All for one and one for all: condensation and the initiation of skeletal development. Bioessays 2000;2:138–47.

    Google Scholar 

  196. Kadota H, Nakanishi T, Asaumi K, et al. Expression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24/CCN2) during distraction osteogenesis. J Bone Miner Metab 2004;22(4):293–302.

    PubMed  CAS  Google Scholar 

  197. Shimo T, Kanyama M, Wu C, et al. Expression and roles of connective tissue growth factor in Meckel’s cartilage development. Dev Dyn 2004;231(1):136–47.

    PubMed  CAS  Google Scholar 

  198. Zhang X, Ziran N, Goater JJ, et al. Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-βeta delays hypertrophy and PGE2 inhibits terminal differentiation. Bone 2004;34(5):809–17.

    PubMed  CAS  Google Scholar 

  199. Wong M, Kireeva ML, Kolesnikova TV, Lau LF. Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells. Dev Biol 1997;192(2):492–508.

    PubMed  CAS  Google Scholar 

  200. Imabayashi H, Mori T, Gojo S, et al. Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. Exp Cell Res 2003;288(1):35–50.

    PubMed  CAS  Google Scholar 

  201. Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M. CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem/FEBS 2001;268(23):6058–65.

    CAS  Google Scholar 

  202. Nakanishi T, Yamaai T, Asano M, et al. Overexpression of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 decreases bone density in adult mice and induces dwarfism. Biochem Biophys Res Commun 2001;281(3):678–81.

    PubMed  CAS  Google Scholar 

  203. Takigawa M, Nakanishi T, Kubota S, Nishida T. Role of CTGF/HCS24/ecogenin in skeletal growth control. J Cell Physiol 2003;194(3):256–66.

    PubMed  CAS  Google Scholar 

  204. Ivkovic S, Yoon BS, Popoff SN, et al. Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development (Cambridge, England) 2003;130(12):2779–91.

    CAS  Google Scholar 

  205. Safadi FF, Xu J, Smock SL, et al. Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 2003;196(1):51–62.

    PubMed  CAS  Google Scholar 

  206. Kumar S, Hand AT, Connor JR, et al. Identification and cloning of a connective tissue growth factor-like cDNA from human osteoblasts encoding a novel regulator of osteoblast functions. J Biol Chem 1999;274(24):17123–31.

    PubMed  CAS  Google Scholar 

  207. Lechner A, Schutze N, Siggelkow H, Seufert J, Jakob F. The immediate early gene product hCYR61 localizes to the secretory pathway in human osteoblasts. Bone 2000;27(1):53–60.

    PubMed  CAS  Google Scholar 

  208. Hadjiargyrou M, Ahrens W, Rubin CT. Temporal expression of the chondrogenic and angiogenic growth factor CYR61 during fracture repair. J Bone Miner Res 2000;15(6):1014–23.

    PubMed  CAS  Google Scholar 

  209. Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-βeta. Nat Cell Biol 2002;4(8):599–604.

    PubMed  CAS  Google Scholar 

  210. Allison TM, Derynck R. Transforming Growth Factor Beta in Skeletal Development and Maintenance. Philadelphia: Lippincott, Williams and Wilkins; 2000.

    Google Scholar 

  211. Luo Q, Kang Q, Si W, et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol Chem 2004;279(53):55958–68.

    PubMed  CAS  Google Scholar 

  212. Nishida T, Nakanishi T, Asano M, Shimo T, Takigawa M. Effects of CTGF/Hcs24, a hypertrophic chondrocyte-specific gene product, on the proliferation and differentiation of osteoblastic cells in vitro. J Cell Physiol 2000;184(2):197–206.

    PubMed  CAS  Google Scholar 

  213. Nishida T, Nakanishi T, Shimo T, et al. Demonstration of receptors specific for connective tissue growth factor on a human chondrocytic cell line (HCS-2/8). Biochem Biophys Res Commun 1998;247(3):905–9.

    PubMed  CAS  Google Scholar 

  214. Mercurio S, Latinkic B, Itasaki N, Krumlauf R, Smith JC. Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development (Cambridge, England) 2004;131(9):2137–47.

    CAS  Google Scholar 

  215. Stoker DJ. Osteopetrosis. Semin Musculoskelet Radiol 2002;6(4):299–305.

    PubMed  Google Scholar 

  216. Safadi FF, Xu J, Smock SL, Rico MC, Owen TA, Popoff SN. Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. J Cell Biochem 2001;84(1):12–26.

    PubMed  CAS  Google Scholar 

  217. Weterman MA, Ajubi N, van Dinter IM, et al. nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 1995;60(1):73–81.

    PubMed  CAS  Google Scholar 

  218. Shikano S, Bonkobara M, Zukas PK, Ariizumi K. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem 2001;276(11):8125–34.

    PubMed  CAS  Google Scholar 

  219. Bandari PS, Qian J, Yehia G, et al. Hematopoietic growth factor inducible neurokinin-1 type: a transmembrane protein that is similar to neurokinin 1 interacts with substance P. Regul Pept 2003;111(1–3):169–78.

    PubMed  CAS  Google Scholar 

  220. Berson JF, Harper DC, Tenza D, Raposo G, Marks MS. Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 2001;12(11):3451–64.

    PubMed  CAS  Google Scholar 

  221. Loging WT, Lal A, Siu IM, et al. Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res 2000;10(9):1393–402.

    PubMed  CAS  Google Scholar 

  222. Onaga M, Ido A, Hasuike S, et al. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells. J Hepatol 2003;39(5):779–85.

    PubMed  CAS  Google Scholar 

  223. Rich JN, Shi Q, Hjelmeland M, et al. Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem 2003;278(18):15951–7.

    PubMed  CAS  Google Scholar 

  224. Ogawa T, Nikawa T, Furochi H, et al. Osteoactivin upregulates expression of MMP-3 and MMP-9 in fibroblasts infiltrated into denervated skeletal muscle in mice. Am J Physiol Cell Physiol 2005;289(3):C697–C707.

    PubMed  CAS  Google Scholar 

  225. Seibel MJ, Eastall R, Gundberg CM, Hannon R, Pols HAP. Biochemical Markers of Bone Metabolism. In: J. P. Bilezikian, L. G. Raisz, G. A. Rodan, Eds. Principles of Bone Biology. 2nd ed. San Diego: Academic Press; 2002:1543–71.

    Google Scholar 

  226. Bi Y, Nielsen KL, Kilts TM, et al. Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts. Bone 2006;38(6):778–86.

    PubMed  CAS  Google Scholar 

  227. Goldberg M, Septier D, Rapoport O, Iozzo RV, Young MF, Ameye LG. Targeted disruption of two small leucine-rich proteoglycans, biglycan and decorin, excerpts divergent effects on enamel and dentin formation. Calcif Tissue Int 2005;77(5):297–310.

    PubMed  CAS  Google Scholar 

  228. Ishida T, Machinami R. Reactive bone and cartilage forming processes of the hands and feet. Pathol Int 1995;45(12):975–6.

    PubMed  CAS  Google Scholar 

  229. Buchanan M, Sandhu HS, Anderson C. Changes in bone mineralization pattern: a response to local stimulus in maxilla and mandible of dogs. Histol Histopathol 1988;3(4):331–6.

    PubMed  CAS  Google Scholar 

  230. Reinholt FP, Wernerson A. Septal distribution and the relationship of matrix vesicle size to cartilage mineralization. Bone Miner 1988;4(1):63–71.

    PubMed  CAS  Google Scholar 

  231. Glimcher MJ. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec 1989;224(2):139–53.

    PubMed  CAS  Google Scholar 

  232. Xiao Z, Camalier CE, Nagashima K, et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol 2007;210(2):325–35.

    PubMed  CAS  Google Scholar 

  233. Mundy GR, Boyce B, Hughes D, et al The effects of cytokines and growth factors on osteoblastic cells. Bone 1995;17(2 Suppl):71S–5S.

    PubMed  CAS  Google Scholar 

  234. Price PA, Fraser JD, Metz-Virca G. Molecular cloning of matrix Gla protein: implications for substrate recognition by the vitamin K-dependent gamma-carboxylase. Proc Natl Acad Sci USA 1987;84(23):8335–9.

    PubMed  CAS  Google Scholar 

  235. Manolagas SC, Bellido T, Jilka RL. New insights into the cellular, biochemical, and molecular basis of postmenopausal and senile osteoporosis: roles of IL-6 and gp130. Int J Immunopharmacol 1995;17(2):109–16.

    PubMed  CAS  Google Scholar 

  236. Huebner AK, Schinke T, Priemel M, et al. Calcitonin deficiency in mice progressively results in high bone turnover. J Bone Miner Res 2006;21(12):1924–34.

    PubMed  CAS  Google Scholar 

  237. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994;367(6460):284–7.

    PubMed  CAS  Google Scholar 

  238. Safadi FF, Hermey DC, Popoff SN, Seifert MF. Skeletal resistance to 1,25-dihydroxyvitamin D3 in osteopetrotic rats. Endocrine 1999;11(3):309–19.

    PubMed  CAS  Google Scholar 

  239. Li YC, Pirro AE, Amling M, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997;94(18):9831–5.

    PubMed  CAS  Google Scholar 

  240. Sooy K, Sabbagh Y, Demay MB. Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro. J Cell Biochem 2005;94(1):81–7.

    PubMed  CAS  Google Scholar 

  241. Takeda S, Yoshizawa T, Nagai Y, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology 1999;140(2):1005–8.

    PubMed  CAS  Google Scholar 

  242. Lee SK, Kalinowski J, Jastrzebski S, Lorenzo JA. 1,25(OH)2 vitamin D3-stimulated osteoclast formation in spleen-osteoblast cocultures is mediated in part by enhanced IL-1 alpha and receptor activator of NF-kappa B ligand production in osteoblasts. J Immunol 2002;169(5):2374–80.

    PubMed  CAS  Google Scholar 

  243. Pascher E, Perniok A, Becker A, Feldkamp J. Effect of 1alpha,25(OH)2-vitamin D3 on TNF alpha-mediated apoptosis of human primary osteoblast-like cells in vitro. Horm Metab Res 1999;31(12):653–6.

    PubMed  CAS  Google Scholar 

  244. Gurlek A, Kumar R. Regulation of osteoblast growth by interactions between transforming growth factor-beta and 1alpha,25-dihydroxyvitamin D3. Crit Rev Eukaryot Gene Expr 2001;11(4):299–317.

    PubMed  CAS  Google Scholar 

  245. Sneddon WB, Demay MB. Characterization of an enhancer required for 1,25-dihydroxyvitamin D3-dependent transactivation of the rat osteocalcin gene. J Cell Biochem 1999;73(3):400–7.

    PubMed  CAS  Google Scholar 

  246. Chae HJ, Jeong BJ, Ha MS, et al. ERK MAP kinase is required in 1,25(OH)2D3-induced differentiation in human osteoblasts. Immunopharmacol Immunotoxicol 2002;24(1):31–41.

    PubMed  CAS  Google Scholar 

  247. Hewison M, Zehnder D, Bland R, Stewart PM. 1alpha-hydroxylase and the action of vitamin D. J Mol Endocrinol 2000;25(2):141–8.

    PubMed  CAS  Google Scholar 

  248. St-Arnaud R, Dardenne O, Prud’homme J, Hacking SA, Glorieux FH. Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). J Cell Biochem 2003;88(2):245–51.

    PubMed  CAS  Google Scholar 

  249. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1alpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 2001;98(13):7498–503.

    PubMed  CAS  Google Scholar 

  250. Song HM, Nacamuli RP, Xia W, et al. High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol 2005;202(1):255–62.

    PubMed  CAS  Google Scholar 

  251. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J 1996;10(9):940–54.

    PubMed  CAS  Google Scholar 

  252. Collins MD, Mao GE. Teratology of retinoids. Annu Rev Pharmacol Toxicol 1999;39:399–430.

    PubMed  CAS  Google Scholar 

  253. Means AL, Gudas LJ. The roles of retinoids in vertebrate development. Annu Rev Biochem 1995;64:201–33.

    PubMed  CAS  Google Scholar 

  254. Schneider RA, Hu D, Rubenstein JL, Maden M, Helms JA. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 2001;128(14):2755–67.

    PubMed  CAS  Google Scholar 

  255. Ohishi K, Nishikawa S, Nagata T, et al. Physiological concentrations of retinoic acid suppress the osteoblastic differentiation of fetal rat calvaria cells in vitro. Eur J Endocrinol 1995;133(3):335–41.

    PubMed  CAS  Google Scholar 

  256. Manji SS, Ng KW, Martin TJ, Zhou H. Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid. J Cell Physiol 1998;176(1):1–9.

    PubMed  CAS  Google Scholar 

  257. Ahmed N, Sammons J, Khokher MA, Hassan HT. Retinoic acid suppresses interleukin 6 production in normal human osteoblasts. Cytokine 2000;12(3):289–93.

    PubMed  CAS  Google Scholar 

  258. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg 1995;77(6):940–56.

    PubMed  CAS  Google Scholar 

  259. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bone Miner Res 1995;10(8):1272–81.

    PubMed  CAS  Google Scholar 

  260. Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 1997;124(13):2659–70.

    PubMed  CAS  Google Scholar 

  261. Erlebacher A, Filvaroff EH, Ye JQ, Derynck R. Osteoblastic responses to TGF-βeta during bone remodeling. Mol Biol Cell 1998;9(7):1903–18.

    PubMed  CAS  Google Scholar 

  262. Kassem M, Kveiborg M, Eriksen EF. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur J Clin Investig 2000;30(5):429–37.

    CAS  Google Scholar 

  263. Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath T, Ten Dijke P. Localization of Smads, the TGF-βeta family intracellular signaling components during endochondral ossification. J Bone Miner Res 1999;14(7):1145–52.

    PubMed  CAS  Google Scholar 

  264. Nesti LJ, Caterson EJ, Wang M, et al. TGF-βeta1 calcium signaling increases alpha5 integrin expression in osteoblasts. J Orthop Res 2002;20(5):1042–9.

    PubMed  CAS  Google Scholar 

  265. Seitzer U, Batge B, Acil Y, Muller PK. Transforming growth factor beta 1 influences lysyl hydroxylation of collagen I and reduces steady-state levels of lysyl hydroxylase mRNA in human osteoblast-like cells. Eur J Clin Investig 1995;25(12):959–66.

    CAS  Google Scholar 

  266. Urano T, Yashiroda H, Muraoka M, et al. p57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor beta1. J Biol Chem 1999;274(18):12197–200.

    PubMed  CAS  Google Scholar 

  267. Nishimori S, Tanaka Y, Chiba T, et al. Smad-mediated transcription is required for transforming growth factor-beta 1-induced p57(Kip2) proteolysis in osteoblastic cells. J Biol Chem 2001;276(14):10700–5.

    PubMed  CAS  Google Scholar 

  268. Atti E, Gomez S, Wahl SM, Mendelsohn R, Paschalis E, Boskey AL. Effects of transforming growth factor-beta deficiency on bone development: a Fourier transform-infrared imaging analysis. Bone 2002;31(6):675–84.

    PubMed  CAS  Google Scholar 

  269. Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH. Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 1998;23(2):87–93.

    PubMed  CAS  Google Scholar 

  270. Urist MR, Mc LF. Osteogenetic potency and new-bone formation by induction in transplants to the anterior chamber of the eye. J Bone Joint Surg 1952;34-A(2):443–76.

    PubMed  CAS  Google Scholar 

  271. Urist MR, Wallace TH, Adams T. The function of fibrocartilaginous fracture callus. Observations on transplants labelled with tritiated thymidine. J Bone Joint Surg Br 1965;47:304–18.

    PubMed  CAS  Google Scholar 

  272. Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science (New York, NY) 1983;220(4598):680–6.

    CAS  Google Scholar 

  273. Urist MR, Sato K, Brownell AG, et al. Human bone morphogenetic protein (hBMP). Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 1983;173(2):194–9.

    CAS  Google Scholar 

  274. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;242(4885):1528–34.

    PubMed  CAS  Google Scholar 

  275. Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS. Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science (New York, NY) 1996;271(5247):360–2.

    CAS  Google Scholar 

  276. Reddi AH. BMP-1: resurrection as procollagen C-proteinase. Science (New York, NY) 1996;271(5248):463.

    CAS  Google Scholar 

  277. Alman BA, Greel DA, Wolfe HJ. Activating mutations of Gs protein in monostotic fibrous lesions of bone. J Orthop Res 1996;14(2):311–5.

    PubMed  CAS  Google Scholar 

  278. Cook SD, Salkeld SL, Rueger DC. Evaluation of recombinant human osteogenic protein-1 (rhOP-1) placed with dental implants in fresh extraction sites. J Oral Implantol 1995;21(4):281–9.

    PubMed  CAS  Google Scholar 

  279. Cook SD, Wolfe MW, Salkeld SL, Rueger DC. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg 1995;77(5):734–50.

    PubMed  CAS  Google Scholar 

  280. Shimizu K, Yoshikawa H, Takaoka K. Local effects of bone morphogenetic protein-4 on skeletal tissues. Clin Orthop Relat Res 1995(318):243–50.

    Google Scholar 

  281. Bentz H, Thompson AY, Armstrong R, Chang RJ, Piez KA, Rosen DM. Transforming growth factor-beta 2 enhances the osteoinductive activity of a bovine bone-derived fraction containing bone morphogenetic protein-2 and 3. Matrix (Stuttgart, Germany) 1991;11(4):269–75.

    CAS  Google Scholar 

  282. Urist MR. Bone: formation by autoinduction. Science 1965;150(698):893–9.

    PubMed  CAS  Google Scholar 

  283. Luyten FP, Cunningham NS, Ma S, et al. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 1989;264(23):13377–80.

    PubMed  CAS  Google Scholar 

  284. Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992;32(2):160–7.

    PubMed  CAS  Google Scholar 

  285. Zhao M, Harris SE, Horn D, et al. Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol 2002;157(6):1049–60.

    PubMed  CAS  Google Scholar 

  286. Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T. Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 1997;238(2):574–80.

    PubMed  CAS  Google Scholar 

  287. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004;22(4):233–41.

    PubMed  CAS  Google Scholar 

  288. Bae SC, Lee KS, Zhang YW, Ito Y. Intimate relationship between TGF-βeta/BMP signaling and runt domain transcription factor, PEBP2/CBF. J Bone Joint Surg Am 2001;83-A Suppl 1(Pt 1):S48–S55.

    PubMed  Google Scholar 

  289. Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 2002;21(47):7156–63.

    PubMed  CAS  Google Scholar 

  290. Mbalaviele G, Sheikh S, Stains JP, et al. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem 2005;94(2):403–18.

    PubMed  CAS  Google Scholar 

  291. Bain G, Muller T, Wang X, Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun 2003;301(1):84–91.

    PubMed  CAS  Google Scholar 

  292. Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Eng 1991;113(2):191–7.

    PubMed  CAS  Google Scholar 

  293. Cowin SC, Sadegh AM. Non-interacting modes for stress, strain and energy in anisotropic hard tissue. J Biomech 1991;24(9):859–67.

    PubMed  CAS  Google Scholar 

  294. Cowin SC, Sadegh AM, Luo GM. Correction formulae for the misalignment of axes in the measurement of the orthotropic elastic constants. J Biomech 1991;24(7):637–41.

    PubMed  CAS  Google Scholar 

  295. Brighton CT, Sennett BJ, Farmer JC, et al. The inositol phosphate pathway as a mediator in the proliferative response of rat calvarial bone cells to cyclical biaxial mechanical strain. J Orthop Res 1992;10(3):385–93.

    PubMed  CAS  Google Scholar 

  296. Brighton CT, Strafford B, Gross SB, Leatherwood DF, Williams JL, Pollack SR. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone Joint Surg 1991;73(3):320–31.

    PubMed  CAS  Google Scholar 

  297. Banes AJ, Tsuzaki M, Yamamoto J, et al. Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol = Biochim Biol Cell 1995;73(7–8):349–65.

    CAS  Google Scholar 

  298. Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 1995;9(15):1614–22.

    PubMed  CAS  Google Scholar 

  299. Terai K, Takano-Yamamoto T, Ohba Y, et al. Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 1999;14(6):839–49.

    PubMed  CAS  Google Scholar 

  300. Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec 1996;244(2):139–47.

    PubMed  CAS  Google Scholar 

  301. D’Souza RN, Aberg T, Gaikwad J, et al. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development (Cambridge, England) 1999;126(13):2911–20.

    Google Scholar 

  302. Ducy P, Starbuck M, Priemel M, et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999;13(8):1025–36.

    PubMed  CAS  Google Scholar 

  303. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Investig 1998;101(7):1468–78.

    PubMed  CAS  Google Scholar 

  304. Yoshitake H, Rittling SR, Denhardt DT, Noda M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci USA 1999;96(14):8156–60.

    PubMed  CAS  Google Scholar 

  305. Speer MY, McKee MD, Guldberg RE, et al. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 2002;196(8):1047–55.

    PubMed  CAS  Google Scholar 

  306. Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382(6590):448–52.

    PubMed  CAS  Google Scholar 

  307. Gilmour DT, Lyon GJ, Carlton MB, et al. Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J 1998;17(7):1860–70.

    PubMed  CAS  Google Scholar 

  308. Bradshaw AD, Graves DC, Motamed K, Sage EH. SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci USA 2003;100(10):6045–50.

    PubMed  CAS  Google Scholar 

  309. Lawler J, Sunday M, Thibert V, et al. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Investig 1998;101(5):982–92.

    PubMed  CAS  Google Scholar 

  310. Kyriakides TR, Zhu YH, Smith LT, et al. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 1998;140(2):419–30.

    PubMed  CAS  Google Scholar 

  311. Hankenson KD, Hormuzdi SG, Meganck JA, Bornstein P. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol 2005;25(13):5599–606.

    PubMed  CAS  Google Scholar 

  312. Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Investig 2002;109(9):1173–82.

    PubMed  CAS  Google Scholar 

  313. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 1996;93(19):10240–5.

    PubMed  CAS  Google Scholar 

  314. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16(21):2813–28.

    PubMed  CAS  Google Scholar 

  315. Yoshizawa T, Handa Y, Uematsu Y, et al. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16(4):391–6.

    PubMed  CAS  Google Scholar 

  316. Akune T, Ohba S, Kamekura S, et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Investig 2004;113(6):846–55.

    PubMed  CAS  Google Scholar 

  317. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991;64(4):693–702.

    PubMed  CAS  Google Scholar 

  318. Niu Z, Yu W, Zhang SX, et al. Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J Biol Chem 2005;280(37):32531–8.

    PubMed  CAS  Google Scholar 

  319. Matsuo K, Owens JM, Tonko M, Elliott C, Chambers TJ, Wagner EF. Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet 2000;24(2):184–7.

    PubMed  CAS  Google Scholar 

  320. Tondravi MM, McKercher SR, Anderson K, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 1997;386(6620):81–4.

    PubMed  CAS  Google Scholar 

  321. Macdonald BT, Joiner DM, Oyserman SM, et al. Bone mass is inversely proportional to Dkk1 levels in mice. Bone 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Safadi, F.F. et al. (2009). Bone Structure, Development and Bone Biology. In: Khurana, J. (eds) Bone Pathology. Humana Press. https://doi.org/10.1007/978-1-59745-347-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-347-9_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-766-2

  • Online ISBN: 978-1-59745-347-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics