Skip to main content

Homogeneous, Bioluminescent Proteasome Assays

  • Protocol
Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 414))

Summary

Protein degradation is mediated predominantly through the ubiquitin–proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer (1–4). The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in diseases such as Parkinson’s and Alzheimer’s citech13:bib05. The importance of the proteasome for general cell homeostasis has been established, and the 2004 Nobel Prize for Chemistry honored the researchers that discovered the ubiquitin–proteasome pathway. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autoflorescence or fluorescent library compounds. To address these issues, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. We have developed homogeneous, bioluminescent assays for all three proteasome activities, the chymotrypsin-like, trypsin-like, and caspase-like, using purified proteasome. We have also applied this technology to a cellular assay using the substrate for the chymotrypsin-like activity in combination with a selective membrane permeabilization step (patent pending). The proteasome assays are designed in a simple “add and read” format and have been tested in 96- and 384-well plates. The bioluminescent, coupled-enzyme format enables sensitive and rapid protease assays ideal for inhibitor screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, J., Palombella, V.J., Sausville, E.A., Johnson, J., et al. (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622.

    CAS  PubMed  Google Scholar 

  2. Adams, J. (2002) Development of the proteasome inhibitor PS-341. Oncologist 7, 9–16.

    Article  CAS  PubMed  Google Scholar 

  3. Voorhees, P.M., Dees, E.C., O’Neil, B., and Orlowski, R.Z. (2003) The proteasome as a target for cancer therapy. Clin. Cancer Res. 9, 6316–6325.

    CAS  PubMed  Google Scholar 

  4. Burger, A.M., and Seth, A.K. (2004) The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur. J. Cancer 4, 2217–2229.

    Article  Google Scholar 

  5. Gu, Z., Nakamura, D., Yao, D., Shi, Z.-Q., and Lipton, S.A. (2005) Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson’s disease. Cell Death Diff. 12, 1202–1204.

    Article  CAS  Google Scholar 

  6. Baumeister, W., Walz, J., Zühl, F., and Seemüller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.

    Article  CAS  PubMed  Google Scholar 

  7. Wolf, D.H., and Hilt, W. (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochem. Biophys. Acta 1695, 19–31.

    Article  CAS  PubMed  Google Scholar 

  8. Glickman, M.H., and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428.

    CAS  PubMed  Google Scholar 

  9. Rajkumar, S.V., Richardson, P.G., Hideshima, T., and Anderson, K.C. (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol. 23, 630–639.

    Article  CAS  PubMed  Google Scholar 

  10. Nussbaum, A.K., Dick, T.P., Keilholz, W., Schirle, M., et al. (1998) Cleavage motifs of the yeast 20S proteasome subunits deduced from digest of enolase I. Proc. Natl. Acad. Sci. U. S. A. 95, 12504–12509.

    Article  CAS  PubMed  Google Scholar 

  11. Rechsteiner, M., and Hill, C.P. (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 15, 27–33.

    Article  CAS  PubMed  Google Scholar 

  12. Kisselev, A.F., Kaganovich, D., and Goldberg A.L. (2002) Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. J. Biol. Chem. 277, 22260–22270.

    Article  CAS  PubMed  Google Scholar 

  13. Kisselev, A.F., Garcia-Calvo, M., Overkleeft, H.S., Peterson, E., et al. (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem. 278, 35869–35877.

    Article  CAS  PubMed  Google Scholar 

  14. Ciechanover, A. (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Diff. 12, 1178–1190.

    Article  CAS  Google Scholar 

  15. Chauhan, D., Hideshima, T., and Anderson, K.C. (2005) Proteasome inhibition in multiple myeloma: therapeutic implication. Ann. Rev. Pharmacol. Toxicol. 45, 465–476.

    Article  CAS  Google Scholar 

  16. Chauhan, D., Catley, L., Li, G., Podar, K., et al. (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407–419.

    Article  CAS  PubMed  Google Scholar 

  17. Richardson, P.G., Barlogie, B., Berenson, J., Singhal, S., et al. (2003) Phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  18. Papandreou, C.N., and Logothetis, C.J. (2004) Bortezomib as a potential treatment for prostate cancer. Cancer Res. 64, 5036–5043.

    Article  CAS  PubMed  Google Scholar 

  19. Leytus, S.P., Melhado, L.L., and Mangel, W.F. (1983) Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209, 299–307.

    CAS  PubMed  Google Scholar 

  20. Liu, J., Bhalgat, M., Zhang, C., Diwu, Z., Hoyland, B., and Klaubert, D.H. (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg. Med. Chem. Lett. 9, 3231–3236.

    Article  CAS  PubMed  Google Scholar 

  21. Grant, S.K., Sklar, J.G., and Cummings, R.T. (2002) Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates. J. Biomol. Screen. 7, 531–540.

    Article  CAS  PubMed  Google Scholar 

  22. O’Brien, M.A., Daily, W.J., Hesselberth, P.E., Moravec, R.A., et al. (2005). Homogeneous, bioluminescent protease assays: caspase-3 as a model. J. Biomol. Screen. 10, 137–148.

    Article  PubMed  Google Scholar 

  23. Lightcap, E.S., Mccormack, T.A., Pien, C.S., Chau, V., et al. (2000) Proteasome inhibition measurements: clinical application. Clin. Chem. 46, 673–683.

    CAS  PubMed  Google Scholar 

  24. Fenteany, G., Standaert, R.F., Lane, W.S., Choi, S., et al. (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731.

    Article  CAS  PubMed  Google Scholar 

  25. Dick, L., Cruikshank, A., Grenier, L., Melandri, F.D., et al. (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin UPbeta-lactone. J. Biol. Chem. 271, 7273–7276.

    Article  CAS  PubMed  Google Scholar 

  26. Dick, L., Cruikshank, A., Destree, A.T., Grenier, L., et al. (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272, 182–188.

    Article  CAS  PubMed  Google Scholar 

  27. Meng, L., Mohan, R.L., Kwok, B.H.B., Elofsson, M., Sin, N., and Crews, C.M. (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo anti-inflammatory activity. Proc. Natl. Acad. Sci. U. S. A. 96, 10403–10408.

    Article  CAS  PubMed  Google Scholar 

  28. Corey, E.J., and Li, W.-D.Z. (1999) Total synthesis and biological activity of lactacystin, omuralike and analogs. Chem. Pharm. Bull. 47, 1–10.

    CAS  PubMed  Google Scholar 

  29. Wojcik, C., and Napoli, M.D. (2004) Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke 35, 1506–1518.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank colleagues at Promega Biosciences, Michael Scurria, Laurent Bernad, Bill Dailey, and James Unch, for synthesizing the bioluminescent proteasome substrates. We are indebted to Keith Wood and Dieter Klaubert for the homogeneous, bioluminescent assay concept. We also thank Kay Rashka, Sandra Hagen, Jeri Culp, Debra Lange, Brian McNamara, Anissa Moraes, and Pam Guthmiller for translating the concepts into products.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

O′Brien, M.A., Moravec, R.A., Riss, T.L., Bulleit, R.F. (2008). Homogeneous, Bioluminescent Proteasome Assays. In: Mor, G., Alvero, A.B. (eds) Apoptosis and Cancer. Methods in Molecular Biology™, vol 414. Humana Press. https://doi.org/10.1007/978-1-59745-339-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-339-4_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-457-9

  • Online ISBN: 978-1-59745-339-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics