Skip to main content

PKR in Innate Immunity, Cancer, and Viral Oncolysis

  • Protocol
Cancer Genomics and Proteomics

Part of the book series: Methods in Molecularbiology™ ((MIMB,volume 383))

Abstract

The mammalian innate immune system provides a first line of defense against microbial pathogens and also serves to activate an antigen specific acquired immune program. Key components of innate immunity are the interferons (IFNs), a family of related cytokines with potent antimicrobial and immuno-modulatory activities. The IFNs exert their effects through the induction of numerous genes, one of which is the double-stranded RNA-dependent protein kinase (PKR), a pivotal antiviral protein found in most human cells. Following activation by double stranded (ds) RNAs produced during viral replication, PKR phosphorylates the α-subunit of eukaryotic translation initiation factor (eIF) 2, causing a severe inhibititon of cellular and viral protein synthesis. Phosphorylation of eIF2α and consequent inhibition of protein synthesis is a major cell growth checkpoint utilized by at least three other kinases, in addition to PKR, following exposure to such cellular stresses as amino acid deprivation and the presence of misfolded proteins in the endoplasmic reticulum. Indeed, it has been demonstrated that disruption of the eIF2α checkpoint can lead to the transformation of immortalized rodent and human cells, plausibly by increasing the protein synthesis rates of proto-oncogenes. Further, it has been shown that disregulation of the eIF2α checkpoint and consequent permissiveness to virus infection may be a common occurrence in tumorigenic mammalian cell lines. These findings have been exploited to develop potent oncolytic RNA viruses that can selectively replicate in and destroy a variety of neoplasias in vitro and in vivo. In this chapter, we describe some of the techniques commonly used in our laboratory to examine PKR activity and eIF2 regulation. Protocols for the generation and use of recombinant vesicular stomatitis virus variants are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a monclonal system of recognition. Cell 91, 295–298.

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. and Janeway, C. A., Jr. (1998) Innate immune recognition and control of adaptive immune responses. Semin. Immunol. 10, 351–353.

    Article  CAS  PubMed  Google Scholar 

  3. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.

    Article  CAS  PubMed  Google Scholar 

  4. Der, S. D., Zhou, A., Williams, B. R., and Silverman, R. H. (1998) Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 15,623–15,628.

    Article  CAS  PubMed  Google Scholar 

  5. Meurs, E., Chong, K., Galabru, J., et al. (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390.

    Article  CAS  PubMed  Google Scholar 

  6. Barber, G. N., Edelhoff, S., Katze, M. G., and Disteche, C. M. (1993) Chromosomal assignment of the interferon-inducible double-stranded RNA-dependent protein kinase (PRKR) to human chromosome 2p21–p22 and mouse chromosome 17 E2. Genomics 16, 765–767.

    Article  CAS  PubMed  Google Scholar 

  7. Barber, G. N., Jagus, R., Meurs, E. F., Hovanessian, A. G., and Katze, M. G. (1995) Molecular mechanisms responsible for malignant transformation by regulatory and catalytic domain variants of the interferon-induced enzyme RNA-dependent protein kinase. J. Biol. Chem. 270, 17,423–17,428.

    Article  CAS  PubMed  Google Scholar 

  8. Clemens, M. J. and Elia, A. (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J. Interferon Cytokine Res. 17, 503–524.

    Article  CAS  PubMed  Google Scholar 

  9. Meurs, E. F., Galabru, J., Barber, G. N., Katze, M. G., and Hovanessian, A. G. (1993) Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 90, 232–236.

    Article  CAS  PubMed  Google Scholar 

  10. Koromilas, A. E., Roy, S., Barber, G. N., Katze, M. G., and Sonenberg, N. (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257, 1685–1689.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, S. and Kaufman, R. J. (1996) Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). J. Biol. Chem. 271, 1756–1763.

    Article  CAS  PubMed  Google Scholar 

  12. Webb, B. L. and Proud, C. G. (1997) Eukaryotic initiation factor 2B (eIF2B). Intl. J. Biochem. Cell Biol. 29, 1127–1131.

    Article  CAS  Google Scholar 

  13. Thomis, D. C. and Samuel, C. E. (1993) Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J. Virol. 67, 7695–7700.

    CAS  PubMed  Google Scholar 

  14. McMillan, N. A., Carpick, B. W., Hollis, B., Toone, W. M., Zamanian-Daryoush, M., and Williams, B. R. (1995) Mutational analysis of the double-stranded RNA (dsRNA) binding domain of the dsRNA-activated protein kinase, PKR. J. Biol. Chem. 270, 2601–2606.

    Article  CAS  PubMed  Google Scholar 

  15. Jagus, R., Joshi, B., and Barber, G. N. (1999) PKR, apoptosis and cancer. Int. J. Biochem. Cell Biol. 31, 123–138.

    Article  CAS  PubMed  Google Scholar 

  16. Williams, B. R., (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120.

    Article  CAS  PubMed  Google Scholar 

  17. Panniers, R. and Henshaw, E. C. (1984) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumour cells. Eur. J. Biochem. 140, 209–214.

    Article  CAS  PubMed  Google Scholar 

  18. Cuddihy, A. R., Wong, A. H., Tam, N. W., Li, S., and Koromilas, A. E. (1999) The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18, 2690–2702.

    Article  CAS  PubMed  Google Scholar 

  19. Ito, T., Jagus, R., and May, W. S. (1994) Interleukin 3 stimulates protein synthesis by regulating double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91, 7455–7459.

    Article  CAS  PubMed  Google Scholar 

  20. Mundschau, L. J. and Faller, D. V. (1995) Platelet-derived growth factor signal transduction through the interferon-inducible kinase PKR. Immediate early gene induction. J. Biol. Chem. 270, 3100–3106.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Y. L., Reis, L. F., Pavlovic, J., et al. (1995) Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106.

    CAS  PubMed  Google Scholar 

  22. Kumar, A., Yang, Y. L., Flati, V., et al. (1997) Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 16, 406–416.

    Article  CAS  PubMed  Google Scholar 

  23. Wong, A. H., Tam, N. W., Yang, Y. L., et al. (1997) Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. EMBO J. 16, 1291–1304.

    Article  CAS  PubMed  Google Scholar 

  24. Goh, K. C., deVeer, M. J., and Williams, B. R. (2000) The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J. 19, 4292–4297.

    Article  CAS  PubMed  Google Scholar 

  25. Barber, G. N., Thompson, S., Lee, T. G., et al. (1994) The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties. Proc. Natl. Acad. Sci. USA 91, 4278–4282.

    Article  CAS  PubMed  Google Scholar 

  26. Saunders, L. R., Perkins, D. J., Balachandran, S., et al. (2001) Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and-2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J. Biol. Chem. 276, 32,300–32,312.

    Article  CAS  PubMed  Google Scholar 

  27. Patel, R. C. and Sen, G. C. (1998) PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17, 4379–4390.

    Article  CAS  PubMed  Google Scholar 

  28. Pataer, A., Vorburger, S. A., Barber, G. N., et al. (2002) Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res. 62, 2239–2243.

    CAS  PubMed  Google Scholar 

  29. Jagus, R. and Gray, M. M. (1994) Proteins that interact with PKR. Biochimie 76, 779–791.

    Article  CAS  PubMed  Google Scholar 

  30. Williams, B. R. (2001) Signal integration via PKR. Sci STKE 2001 89, RE2.

    Google Scholar 

  31. Fisher, P. B. (2005) Is mda-7/IL-24 a magic bullet for cancer? Cancer Res. 65, 10,128–10,138.

    Article  CAS  PubMed  Google Scholar 

  32. Katze, M. G. (1995) Regulation of the interferon-induced PKR: can viruses cope? Trends Microbiol. 3, 75–78.

    Article  CAS  PubMed  Google Scholar 

  33. Katze, M. G., He, Y., and Gale, M. Jr. (2002) Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2(9), 675–687.

    Article  CAS  PubMed  Google Scholar 

  34. Durbin, R. K., Mertz, S. E., Koromilas, A. E., and Durbin, J. E. (2002) PKR protection against intranasal vesicular stomatitis virus infection is mouse strain dependent. Viral Immunol. 15, 41–51.

    Article  CAS  PubMed  Google Scholar 

  35. Balachandran, S., Roberts, P. C., Brown, L. E., et al. (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13, 129–141.

    Article  CAS  PubMed  Google Scholar 

  36. Stojdl, D. F., Abraham, N., Knowles, S., et al. (2000) The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J. Virol. 74, 9580–9585.

    Article  CAS  PubMed  Google Scholar 

  37. Barber, G. N., Wambach, M., Thompson, S., Jagus, R., and Katze, M. G. (1995) Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation. Mol. Cell Biol. 15, 3138–3146.

    CAS  PubMed  Google Scholar 

  38. Barber, G. N., Tomita, J., Garfinkel, M. S., Meurs, E., Hovanessian, A., and Katze, M. G. (1992) Detection of protein kinase homologues and viral RNA-binding domains utilizing polyclonal antiserum prepared against a baculovirus-expressed ds RNA-activated 68,000-Da protein kinase. Virology 191, 670–679.

    Article  CAS  PubMed  Google Scholar 

  39. Dever, T. E., Sripriya, R., McLachlin, J. R., et al. (1998) Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor-2α kinase homolog. Proc. Natl. Acad. Sci. USA 95, 4164–4169.

    Article  CAS  PubMed  Google Scholar 

  40. Chong, K. L., Feng, L., Schappert, K., et al. (1992) Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11, 1553–1562.

    CAS  PubMed  Google Scholar 

  41. Balachandran, S., Kim, C. N., Yeh, W. C., Mak, T. W., Bhalla, K., and Barber, G. N. (1998) Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 17, 6888–6902.

    Article  CAS  PubMed  Google Scholar 

  42. Donze, O., Dostie, J., and Sonenberg, N. (1999) Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 256, 322–329.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, S. B. and Esteban, M. (1994) The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199, 491–496.

    Article  CAS  PubMed  Google Scholar 

  44. Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.

    Article  CAS  PubMed  Google Scholar 

  45. Donze, O., Deng, J., Curran, J., Sladek, R., Picard, D., and Sonenberg, N. (2004) The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J. 23, 564–571.

    Article  CAS  PubMed  Google Scholar 

  46. Gil, J., Rullas, J., Garcia, M. A., Alcami, J., and Esteban, M. (2001) The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-κB activation. Oncogene 20, 385–394.

    Article  CAS  PubMed  Google Scholar 

  47. Gil, J., Garcia, M. A., Gomez-Puertas, P., et al. (2004) TRAF family proteins link PKR with NF-kappa B activation. Mol. Cell Biol. 24, 4502–4512.

    Article  CAS  PubMed  Google Scholar 

  48. Perkins, D. J. and Barber, G. N. (2004) Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol. Cell Biol. 24, 2025–2040.

    Article  CAS  PubMed  Google Scholar 

  49. Hinnebusch, A. G. (1994) The eIF-2α kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5, 417–426.

    Article  CAS  PubMed  Google Scholar 

  50. Han, A. P., Yu, C., Lu, L., et al. (2001) Heme-regulated eIF2α kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918.

    Article  CAS  PubMed  Google Scholar 

  51. Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G. (1992) Phosphorylation of initiation factor-2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596.

    Article  CAS  PubMed  Google Scholar 

  52. Harding, H. P., Zhang, Y., Zeng, H., et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 11, 619–633.

    Article  CAS  PubMed  Google Scholar 

  53. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904.

    Article  CAS  PubMed  Google Scholar 

  54. Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase (see comments). Nature 397, 271–274 [erratum appears in Nature 1999;398:90].

    Article  CAS  PubMed  Google Scholar 

  55. Scheuner, D., Song, B., McEwen, E., et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176.

    Article  CAS  PubMed  Google Scholar 

  56. Harding, H. P. and Ron, D. (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51, S455–S461.

    Article  CAS  PubMed  Google Scholar 

  57. Donze, O., Jagus, R., Koromilas, A. E., Hershey, J. W., and Sonenberg, N. (1995) Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 14, 3828–3834.

    CAS  PubMed  Google Scholar 

  58. Balachandran, S. and Barber, G. N. (2004) Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5, 51–65.

    Article  CAS  PubMed  Google Scholar 

  59. Wagner, R. R. and Rose, J. K. (1996) Rhabdoviridae: the Viruses and Their Replication, in Fields Virology, (Fields, B. N., Howley, P. M. et al., ed.), Lipincott-Raven Publishers: Philadelphia, PA, pp. 1121–1135.

    Google Scholar 

  60. Balachandran, S. and Barber, G. N. (2000) Vesicular stomatitis virus therapy of tumors. IUBMB Life 50, 135–138.

    CAS  PubMed  Google Scholar 

  61. Balachandran, S., Porosnicu, M., and Barber, G. N. (2001) Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or Myc function and involves induction of apoptosis. J. Virol. 75, 3474–3479.

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez, M., Porosnicu, M., Markovic, D., and Barber, G. N. (2002) Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J. Virol. 76, 895–904.

    Article  CAS  PubMed  Google Scholar 

  63. Obuchi, M., Fernandez, M., and Barber, G. N. (2003) Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J. Virol. 77, 8843–8856.

    Article  CAS  PubMed  Google Scholar 

  64. Stojdl, D. F., Lichty, B., Knowles, S., et al. (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825.

    Article  CAS  PubMed  Google Scholar 

  65. Stojdl, D. F., Lichty, B. D., tenOever, B. R., et al. (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275.

    Article  CAS  PubMed  Google Scholar 

  66. Wagner, R. R. (1987) Rhabdovirus biology and infection, an overview, in The Rhabdoviruses, (Wagner, R. R., ed.), Plenum, New York, pp. 9–74.

    Google Scholar 

  67. Rose, R. R. and Joklik, W. (1996) Rhabdoviridae: the viruses and their replication, in Fields Virology, (D.M.K. B.N. Fields, P.M. Howley, eds.), Lippincott-Raven, Philadelphia, PA, pp. 1121–1136.

    Google Scholar 

  68. Porosnicu, M., Mian, A., and Barber, G. N. (2003) The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res. 63, 8366–8376.

    CAS  PubMed  Google Scholar 

  69. Dever, T. E., Chen, J. J., Barber, G. N., et al. (1993) Mammalian eukaryotic initiation factor 2 α-kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90, 4616–4620.

    Article  CAS  PubMed  Google Scholar 

  70. Laurent, A. G., Krust, B., Galabru, J., Svab, J., and Hovanessian, A. G. (1985) Monoclonal antibodies to an interferon-induced Mr 68,000 protein and their use for the detection of double-stranded RNA-dependent protein kinase in human cells. Proc. Natl. Acad. Sci. USA 82, 4341–4345.

    Article  CAS  PubMed  Google Scholar 

  71. Konieczny, A. and Safer, B. (1983) Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation. J. Biol. Chem. 258, 3402–3408.

    CAS  PubMed  Google Scholar 

  72. Savinova, O. and Jagus, R. (1997) Use of vertical slab isoelectric focusing and immunoblotting to evaluate steady-state phosphorylation of eIF2 alpha in cultured cells. Methods 11, 419–425.

    Article  CAS  PubMed  Google Scholar 

  73. DeGracia, D. J., Sullivan, J. M., Neumar, R. W., et al. (1997) Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2 alpha. J. Cerebral Blood Flow Metab. 17, 1291–1302.

    Article  CAS  Google Scholar 

  74. Lawson, N. D., Stillman, E. A., Whitt, M. A., and Rose, J. K. (1995) Recombinant vesicular stomatitis viruses from DNA [published erratum appears in Proc Natl Acad Sci USA 1995 Sep 12;92(19):9009]. Proc. Natl. Acad. Sci. USA 92, 4477–4481.

    Article  CAS  PubMed  Google Scholar 

  75. Schnell, M. J., Buonocore, L., Kretzschmar, E., Johnson, E., and Rose, J. K. (1996) Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc. Natl. Acad. Sci. USA 93, 11,359–11,365.

    Article  CAS  PubMed  Google Scholar 

  76. Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.

    Article  CAS  PubMed  Google Scholar 

  77. Mori, K. (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454.

    Article  CAS  PubMed  Google Scholar 

  78. Patil, C. and Walker, P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355.

    Article  CAS  PubMed  Google Scholar 

  79. Harding, H. P., Calfon, M., Urano, F., Novoa, I., and Ron, D. (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Ann. Rev. Cell Dev. Biol. 18, 575–599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Balachandran, S., Barber, G.N. (2007). PKR in Innate Immunity, Cancer, and Viral Oncolysis. In: Fisher, P.B. (eds) Cancer Genomics and Proteomics. Methods in Molecularbiology™, vol 383. Humana Press. https://doi.org/10.1007/978-1-59745-335-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-335-6_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-504-0

  • Online ISBN: 978-1-59745-335-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics