Skip to main content

Fatty Acids in the Causation and Therapy of Metabolic Syndrome

  • Chapter
Wild-Type Food in Health Promotion and Disease Prevention

Abstract

The role of fatty acids in the prevention and pathogenesis of metabolic syndrome leading to cardiovascular diseases, type 2 diabetes and insulin resistance are reviewed. We did Medline, PubMed search till March, 2007. Excess of linoleic acid, trans fatty acids (TFA), saturated and total fat as well as refined starches and sugar are proinflammatory. Low dietary monounsaturated fatty acids (MUFA) and n-3 fatty acids and other long chain polyunsaturated fatty acids (LCPUFA) are important in the pathogenesis of metabolic syndrome. Sedentary behaviour in conjunction with mental stress and various personality traits can enhance sympathetic activity and increase the secretion of catecholamine, cortisol and serotonin that appear to be underlying mechanisms of obesity and metabolic syndrome. Excess secretion of these neurotransmitters in conjunction of underlying long chain PUFA deficiency, and excess of proinflammatory nutrients, may damage the neurons via proinflammatory cytokines, in the ventromedial hypothalamus and insulin receptors in the brain, especially during fetal life, infancy and childhood, resulting into their dysfunction. Since 30–50% of the fatty acids in the brain are LCPUFA, especially omega-3 fatty acids, which are incorporated in the cell membrane phospholipids, it is possible that their supplementation may be protective. Omega-3 fatty acids are also known to enhance parasympathetic activity and increase the secretion of anti-inflammatory cytokines IL-4 and IL-10, as well as acetylecholine in the hippocampus. It is possible that marginal deficiency of LCPUFA, especially n-3 fatty acids, due to poor dietary intake during the critical period of brain growth and development in the fetus and infant, and also possibly in the child, adolescents and adults, may enhance oxidative stress and the release of proinflammatory cytokines; tumor necrosis factor-alpha, interleukin-1, 2 and 6 and cause neuronal and beta-cell dysfunction. Experimental studies indicate that ventromedial hypothalamic lesion in rats induces hyperphagia, resulting in glucose intolerance and insulin resistance. Administration of neuropeptide Y abolished the hyperphagia and ob mRNA (leptin mRNA) in these rats. Treatment with diets rich in MUFA and omega-3 fatty acids, meditation, beta blockers, ACE inhibitors, and phytochemicals may have a beneficial influence on insulin receptors and ventromedial hypothalamic dysfunction, causing beneficial effects in metabolic syndrome. Despite weaknesses, epidemiological studies and intervention trials indicate that treatment with n-3 fatty acids and MUFA rich foods may be applied to clinical practice and used to direct therapy for prevention of metabolic syndrome. Intervention trials with Columbus diet and lifestyle in patients with metabolic syndrome would be necessary to provide a proof for our statement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365:1415–1428.

    Article  CAS  Google Scholar 

  2. Grundy SM, Brewer HB, Cleeman JI, Smith JI, Smith SC, Lenfant C. Definition of metabolic syndrome. Report of the National Heart, Lung and Blood Institute/American Heart Association Conference on Specific Issues Related to Definition. Circulation 2004;109:433–438.

    Article  Google Scholar 

  3. Singh RB, Otsuka K, Chiang CE, Joshi SR. Nutritional predictors and modulators of metabolic syndrome. J Nutr Environ Med 2004;14:3–16.

    Article  CAS  Google Scholar 

  4. Singh RB, Rastogi SS, Rastogi V, Niaz MA, Madhu SV, Chen Min, Shoumin Z. Blood pressure trends, plasma insulin levels and risk factors, in rural and urban elderly populations of north India. Coro Art Dis 1997;8:463–468.

    Article  CAS  Google Scholar 

  5. Pella D, Singh RB, Tomlinson B, Kong CW. Coronary artery disease in developing and newly industrialized countries: a scientific statement of the International College of Cardiology. In: Dhalla NS, Chocklingham A, Berkowitz HJ, Singal PK, eds. Frontiers of Cardiovascular Health. Kluwer Academic Publishers, Boston, 2003, pp. 473–483.

    Google Scholar 

  6. Singh RB, Pella D, Sharma JP, et al. Increased concentrations of lipoprotein(a), circadian rhythms and metabolic reactions, evoked by acute myocardial infarctions, in relation to large breakfast. Biomed Pharmacother 2004;58(Suppl):116–122.

    Article  Google Scholar 

  7. Singh RB, Pella D, Neki NS, et al. Mechanism of acute myocardial infarction study. Biomed Pharmacother 2004;58(Suppl):111–115.

    Article  Google Scholar 

  8. Singh RB, Beegom R, Verma SP et al. Association of dietary factors and other coronary risk factors with social class in women in five Indian cities. Asia Pac J Clin Nutr 2000;9:298–302.

    Article  Google Scholar 

  9. Das UN. Pathobiology of metabolic syndrome X in obese and non-obese South Asian Indians. Further discussion and some suggestions. Nutrition 2003 Jun;19(6):560–562.

    Article  Google Scholar 

  10. Benatti P, Peluso G, Nicolai R, Calvani M. Polyunsaturated fatty acids:biochemical, nutritional and epigenetic properties. J Am Coll Nutr 2004;23:281–302.

    CAS  Google Scholar 

  11. Simopoulos AP. Is Insulin Resistance Influenced by Dietary Linoleic Acid and Trans Fatty Acids? Frr Red Biol Med 1994;17:367–372.

    Article  CAS  Google Scholar 

  12. Das UN. Hypertension as a low grade systemic inflammatory condition, that has its origin in the perinatal period. J Asso Phys India 2006;54:133–142.

    CAS  Google Scholar 

  13. Singh RB, Niaz MA, Beegom R, et al. Body fat percent by bioelectrical impedence analysis and risk of coronary artery disease among urban men, with low rates of obesity: the Indian paradox. J Amer Coll Nutr 1999;18:268–273.

    CAS  Google Scholar 

  14. Pella D, Dubnov G, Singh RB, Sharma R, Berry EM, Manor O. Effects of an Indo-Mediterranean diet on the omega-6/omega-3 ratio in patients at high risk of coronary artery disease: The Indian paradox. In Simopoulos AP, Cleland LG, eds. World Review of Nutrition and Dietetics. Karger 2003, 92, pp. 74–80.

    Google Scholar 

  15. Joint WHO/FAO Expert Consultation. Diet, Nutrition and the Prevention of Chronic Diseases, WHO, Geneva, WHO Technical Report Series 916;2003

    Google Scholar 

  16. Simopoulos AP. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet 2003;92:1–22.

    CAS  Google Scholar 

  17. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW: Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991;40:280–289.

    Article  CAS  Google Scholar 

  18. Lardinois CK, Strarich GH. Polyunsaturated fats enhance peripheral glucose utilization in rats. J Am Coll Nutr 199;10:340–345.

    Google Scholar 

  19. Axen KV, Dikeakos A, Sclafani A. High dietary fat promotes syndrome x in nonobese rats. J Nutr 2003;133(7):2244–2249.

    CAS  Google Scholar 

  20. Hu FB, van Dam RM, Liu S: Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia 2001;44:805–817.

    Article  CAS  Google Scholar 

  21. Swinburn BA: Effect of dietary lipid on insulin action. Clinical studies. Ann N Y Acad Sci 1993;683:102–109.

    Article  CAS  Google Scholar 

  22. Unsitupa M, Schwab U, Makimattila S, et al. Effects of two high fat diets with different fatty acid compositions on glucose and lipid metabolism in healthy young women. Am J Clin Nutr 1994;59:1310–1316.

    Google Scholar 

  23. Vessby B, Unsitupa M, Hermansen K, et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study, Diabetologia 2001;44:312–319.

    Article  CAS  Google Scholar 

  24. Marshall J, Bessesen D, Hamman R. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: The san Luis Valley Diabetologia 1997;40:430–438.

    Article  CAS  Google Scholar 

  25. Feskens EJ, Loeber JG, Kromhout D. Diet and physical activity as determinants of hyperinsulinemia: the Zutphen Elderly Study. Am J Epidemiol 1994;140:350–360.

    CAS  Google Scholar 

  26. Mayer-Davis EJ, Monaco JH, Hoen HM, et al. Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). Am J Clin Nutr 1997;65:79–87.

    CAS  Google Scholar 

  27. Salmeron J, Hu FB, Manson JE, et al. Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 2001;73:1019–1026.

    CAS  Google Scholar 

  28. Hwalla N, Torbay N, Andari N, et al. Restoration of normal insulinemia and insulin sensitivity in hyperinsulinemic normoglycemic men by a hypoenergetic high monounsaturated fat diet. J Nutr Environ Med 2004;14:29–38.

    Article  CAS  Google Scholar 

  29. Folsom AR, Ma J, McGovern PG, Eckfeldt JH. Relation between plasma phospholipid, saturated fatty acids and hyperinsulinemia. Metabolism 1996;45:223–228.

    Article  CAS  Google Scholar 

  30. Lovejoy JC, Champagne CM, Smith SR, et al. Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 2001;86–89.

    Google Scholar 

  31. Low CC, Grossman EB, Gumbiner B. Potentiation of effects of weight loss by monounsaturated fatty acids in obese NIDDM patients. Diabetes 1996;45:569–575.

    Article  CAS  Google Scholar 

  32. Gumbiner B, Low CC, Reaven PD. Effects of monounsaturated fatty acid-enriched hypocaloric diet on cardiovascular risk factors in obese patients with type 2 diabetes. Diab Care 1998;21:9–15.

    Article  CAS  Google Scholar 

  33. Heilbronn LK, Noakes M, Clifton PM. Effect of energy restriction, weight loss and diet composition on plasma lipids and glucose in patients with type 2 diabetes. Diabetes Care 1999;22:889–895.

    Article  CAS  Google Scholar 

  34. Ruiz-Gutierrez V, Morgado N, Prada JL, et al. Composition of human VLDL triacylglycerol after ingestion of olive oil and high oleic sunflower oil. J Nutr 1998;128:570–576.

    CAS  Google Scholar 

  35. McNamara DJ. Dietary fatty acids, lipoproteins and cardiovascular disease. Adv Food Nutr Res 1992;36:253.

    CAS  Google Scholar 

  36. Montalto MB, Bensadoun A. Lipoprotein lipase synthesis and secretion: effects of concentration and type of fatty acids in adipocyte cell culture. J Lipid Res 1993;34:397–407.

    CAS  Google Scholar 

  37. Kafatos A, Comas GE. Biological effect of olive oil in human health. In Kiritsakis A, ed. Olive Oil Champaign, IL, American Oil Chemists Society, 1990, pp. 157.

    Google Scholar 

  38. Roche HM, Zampelas A, Knapper JME, et al. Effect of long-term olive oil dietary intervention on postprandial triacyglycerol and factor VII metabolism. Am J Clin Nutr 1998;68:552–560.

    CAS  Google Scholar 

  39. Blades B, Garg A. Mechanisms of increase in plasma triacylglycerol concentrations as a result of high carbohydrate intake in patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1995;62:996–1002.

    CAS  Google Scholar 

  40. Kiens B, Essen-Gustausson B, Gad P, Lithell H. Lipoprotein lipase activity and intra-muscular triglyceride store after long-term high fat and high-carbohydrate diets in physically trained men. Clin Physiol 1987;7:1.

    CAS  Google Scholar 

  41. Hung T, Sievenpiper JL, Marchie A, et al. Fat verses carbohydrate in insulin resistance, obesity, diabetes and cardiovascular disease. Curr Opin Clin Nutr Metab Care 2003;6:165–176.

    Article  CAS  Google Scholar 

  42. Schulze MB. Dietary approaches to prevent the metabolic syndrome. Diab Care 2004;27:613–614.

    Article  Google Scholar 

  43. McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring cohort. Diab Care 2004;27:538–546.

    Article  Google Scholar 

  44. Bazzano LA, Serdula M, Liu S. Prevention of type 2 diabetes by diet and lifestyle modification. J Am Coll Nutr 2005;24:310–319.

    Google Scholar 

  45. Pella D, Thomas N, Tomlinson B, Singh RB. Prevention of coronary artery diseases: the South Asian paradox. Lancet 2003;361:79.

    Article  Google Scholar 

  46. The World Health Report 2004. Global strategy on Diet, Physical Activity and Health. Geneva, WHO, 2004.

    Google Scholar 

  47. Anderson CAM, Appel LJ. Dietary modification and CVD prevention: A matter of fat. JAMA 2006;295:693–695.

    Article  CAS  Google Scholar 

  48. Pickering TG. New guidelines on diet and blood pressure. Hypertension 2006;47:135–136.

    Article  CAS  Google Scholar 

  49. Esposito K, Glugliano D. Diet and inflammation: a link to metabolic and cardiovascular diseases. Euro Heart J 2006;27:15–20.

    Article  Google Scholar 

  50. Vogel RA. Eating, vascular biology, and atherosclerosis: a lot to chew on. Euro Heart J 2006;27:13–14.

    Article  Google Scholar 

  51. Pereira MA, Kartashow AI, Ebbeting CB, et al. Fastfood, weight gain and insulin resistance (the CARDIA Study). 15-year prospective analysis. Lancet 2005;365:36–42.

    Article  Google Scholar 

  52. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, et al. Reversal Investigators. Effect of intensive compared with moderate lipid lowering therapy on progression of coronary atherosclerosis. A randomized controlled trial. JAMA 2004;291:1071–1080.

    Article  CAS  Google Scholar 

  53. Cannon CP, Braunwald E, McCabe CH, et al. Pravastatin or atorvastatin evaluation and infection therapy-Thrombolysis in myocardial infarction 22 investigators. Intensive verses moderate lipid lowering with statins after acute coronary syndromes. N Eng J Med 2004;350:1495–1504.

    Article  CAS  Google Scholar 

  54. Esposito K, Glugliano D, Nappo F, Marfella R for the Campanian Postprandial Hyperglycemia Study Group. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 2004;110:214–219.

    Article  CAS  Google Scholar 

  55. Ceriello A, Assaloni R, Da Ros R, Maier A, et al. Effect of atorvastatin and irbesarten, alone and in combination on postprandial endothelial dysfunction, oxidative stress and inflammation in type 2 diabetes patients. Circulation 2005;111:2518–2524.

    Article  CAS  Google Scholar 

  56. Boger RH. Association of asymmetric dimethylarginine and endothelial dysfunction. Clin Chem Lab Med 2003;41:1467–1472.

    Article  Google Scholar 

  57. Exposito K, Nappo F, Giugliano F, Giugliano G, Martella R, Giugliano D. Effect of dietary antioxidants on postprandial endothelial dysfunction induced by a high meat in healthy subjects. Am J Clin Nutr 2003;77:139–143.

    Google Scholar 

  58. Bowen PE, Borthakur G. Postprandial lipid oxidation and cardiovascular risk. Curr Atheroscler Rep 2004;6:477–484.

    Article  Google Scholar 

  59. Ceriello A, Motz E. Is oxidative stress the pathogenetic mechanism underlying insulin resistance, diabetes and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004;24:816–823.

    Article  CAS  Google Scholar 

  60. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome. A comprehensive perspective based on interactions between obesity, diabetes and inflammation. Circulation 2005;111:1448–1454.

    Article  Google Scholar 

  61. Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002;106:2067–2072.

    Article  CAS  Google Scholar 

  62. Cerietto A, Quagliaro L, Catone B, et al. The role of hyperglycemia in nitrotyrosine postprandial generation. Diab Care 2002;25:1439–1443.

    Article  Google Scholar 

  63. Esposito K, Nappo F, Giugliano F, et al. Meal modulation of circulating interleukin-18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr 2003;78:1135–1140.

    CAS  Google Scholar 

  64. Tataranni PA, Ortega EA. Burning question. Does an adipokine induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes. Diabetes 2005;54:917–927.

    Article  CAS  Google Scholar 

  65. Pankow JS, Duncam BB, Schmidt MI, et al. Atherosclerotic Risk in Community Study. Fasting plasma free fatty acids and risk of type 2 diabetes: the atherosclerotic risk in community study. Diab Care 2004;27:77–82.

    Article  CAS  Google Scholar 

  66. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 2004;291:1978–1986.

    Article  CAS  Google Scholar 

  67. Kim F, Tysseling KA, Julie R, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKß. Arterioscler Thromb Vasc Biol 2005;25:989–994.

    Article  CAS  Google Scholar 

  68. Gao Z, Hwang D, Bataille F, Lfevre M, York D, Quon MJ, Ye J. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 2002;277:48,115-48,121.

    Google Scholar 

  69. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-b and NF-kappa B. Nat Med 2005;11:183–190.

    Article  CAS  Google Scholar 

  70. Yamauchi T, Kamon J, Waki H, et al. The fat derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941–946.

    Article  CAS  Google Scholar 

  71. Lopez-Garcia E, Schulze MB, Meigs JB, et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005;135:562–566.

    CAS  Google Scholar 

  72. Pirro M, Schilaci G, Savarese G, et al. Attenuation of inflammation with short-term dietary intervention is associated with a reduction of arterial stiffness in subjects with hypercholesterolaemia. Eur J Cardiocasc Prev Rehabil 2004;11:497–502.

    Article  Google Scholar 

  73. Lopez-Garcia E, Schulze MB, Manson JE, et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J Nutr 2004;134:1806–1811.

    CAS  Google Scholar 

  74. Kris-Etherton PM, Lichtenstein AH, Howard BV, Steinberg D, Witztum JL for the Nutrition Committee of the American Heart Association Council on Nutrition, Physical Activity and Metabolism. Antioxidant vitamin supplements and cardiovascular disease. Circulation 2004;110:637–641.

    Article  CAS  Google Scholar 

  75. Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol 2005;288:H2031–H2041.

    Article  CAS  Google Scholar 

  76. Diamant M, Lamb HJ, van de Ree MA, et al. The association between abdominal visceral fat and carotid stiffness is mediated by circulating inflammatory markers in uncomplicated type 2 diabetes. J Clin Endocrinol Metab 2005;90:1495–1501.

    Article  CAS  Google Scholar 

  77. Piche ME, Lemieux S, Weisnagei SJ, Corneau L, Nadeau A, Bergeron J. Relation of high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor alpha and fibrinogen to abdominal adipose tissue, blood pressure and cholesterol and triglyceride levels in healthy postmenopausal women. Am J Cardiol 2005;96:92–97.

    Article  CAS  Google Scholar 

  78. Pereira MA, Kartashow AI, Ebbeling CB, et al. Fast-food weight gain and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005;365:36–42.

    Article  Google Scholar 

  79. Drapeau V, Despres JP, Bouchard C, et al. Modifications in food-group consumption are related to long-term body-weight changes. Am J Clin Nutr 2004;80:29–37.

    CAS  Google Scholar 

  80. Knoops KTB, de Groot LC, Kromhout D, et al. Mediterranean diet, lifestyle factors and 10-year mortality in elderly European men and women. The HALE project. JAMA 2004;292:1433–1439.

    Article  Google Scholar 

  81. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 2003;348:2599–2608.

    Article  Google Scholar 

  82. De Logeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors and the rate of cardiovascular complications after myocardial infarction. Final report of the Lyon Diet Heart Study. Circulation 1999;99:779–785.

    Google Scholar 

  83. Esposito K, Marfella R, Ciotola M, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 2004;292:1440–1446.

    Article  CAS  Google Scholar 

  84. Iso H, Kobayashi M, Ishihara J, et al. for the JPHC Study Group. Intake of Fish and n3 Fatty Acids and Risk of Coronary Heart Disease Among Japanese: The Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 2006;113:195–202.

    Article  CAS  Google Scholar 

  85. Singh RB, Dubnov G, Niaz MA, et al. Effect of an Indo-Mediterranean diet on progression of coronary disease in high risk patients:a randomized single blind trial. Lancet 2002;360:1455–1461.

    Article  Google Scholar 

  86. Gramenzi A, Gentile A, Fasoli M, et al. Association between certain foods and risk of acute myocardial infarction in women. BMJ 1990;300:771–773.

    Article  CAS  Google Scholar 

  87. Singh RB, Niaz MA, Agarwal P, Beegum R, Rastogi SS. Effect of antioxitant rich foods on plasma ascorbic acid, cardiac enzyme and lipid peroxide levels in patients hospitalized with acute myocardial infarction J Am Diet Assoc 1995;95:775–780.

    Article  CAS  Google Scholar 

  88. Singh RB, Rastogi SS, Verma R, Bolaki L, Singh R, Ghosh S. An Indian experiment with nutritional modulation in acute myocardial infarction. Am J Cardiol 1992;69:879–885.

    Article  CAS  Google Scholar 

  89. Singh RB, Rastogi SS, Verma R, et al. Randomized, controlled trial of cardioprotective diet in patients with acute myocardial infarction: results of one year follow up. BMJ 1992;304:1015–1019.

    CAS  Google Scholar 

  90. Singh RB, Niaz MA, Sharma JP, et al. Randomized, double blind, placebo controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: the Indian Experiment of Infarct Survival-4. Cardiovasc Drug Ther 1997;11:485–491.

    Article  CAS  Google Scholar 

  91. Singh RB, Pella D, De Meester F. What to eat and chew in patients with acute myocardial infarction? Euro Heart J 2006;27:1628–1629.

    Article  Google Scholar 

  92. Estruch R, Martinez-Gonzalez MA, Corella D, et al. Effects of Mediterranean-style diet on cardiovascular risk factors, a randomized trial. Ann Intern Med 2006;145:1–11.

    Google Scholar 

  93. De Lorgeril M, Salen P. The Mediterranean-style diet for the prevention of cardiovascular diseases. Pub Health Nutr 2006;9:118–123.

    Article  Google Scholar 

  94. Harris WS, Reid KJ, Sands SA, et al. Blood omega-3 and trans fatty acids in middle aged acute coronary syndrome patients. Am J Cardiol 2007;99:154–158.

    Article  CAS  Google Scholar 

  95. Singh RB, De Meester F, Juneja L, Mechirova V, Pella D. New risk factors of heart failure? Euro Heart J 2007;8:1038–1039.

    Article  Google Scholar 

  96. Harper CR, Jacobson TA. Usefulness of omega-3 fatty acids and the prevention of coronary heart disease. Amer J Cardiol 2005;96:1521–1529.

    Article  CAS  Google Scholar 

  97. Mozaffarian D, Geelan A, Brouwer IA, et al. Effect of fish oil on heart rate in humans, a metaanalysis of randomized, controlled trials. Circulation 2005;112:1945–1952.

    Article  CAS  Google Scholar 

  98. Houston MC, Egan BM. The metabolic syndrome. JANA 2005;8:3–83.

    Google Scholar 

  99. Singh RB, Niaz MA, Kartik C. Can omega-3 fatty acids provide myocardial protection by decreasing infarct size and inhibiting atherothrombosis? Euro Heart J 2001;(Supple 3):D62–D69.

    Google Scholar 

  100. Singh RB, Pella D, Kartikey K, DeMeester F, et al., and the Five City Study Group. Prevalence of obesity, physical inactivity and undernutrition, a triple burden of diseases, during transition in a middle income country. Acta Cardiol 2007;62:119–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Singh, R.B., de Meester, F., Mechirova, V., Pella, D., Otsuka, K. (2008). Fatty Acids in the Causation and Therapy of Metabolic Syndrome. In: De Meester, F., Watson, R.R. (eds) Wild-Type Food in Health Promotion and Disease Prevention. Humana Press. https://doi.org/10.1007/978-1-59745-330-1_19

Download citation

Publish with us

Policies and ethics