Skip to main content

Identification and Analysis of Essential Genes in Haemophilus influenzae

  • Protocol
Microbial Gene Essentiality: Protocols and Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 416))

Abstract

The human respiratory pathogen Haemophilus influenzae, a Gram-negative bacterium, is the first freeliving organism to have its complete genome sequenced, providing the opportunity to apply genomic-scale approaches to study gene function. This chapter provides an overview of a highly efficient, in vitro mariner transposon-based method that exploits the natural transformation feature of this organism for the identification of essential genes. In addition, we describe strategies for conditional expression systems that would facilitate further analysis of this class of genes. Finally, we outline a method based on the approach used in H. influenzae for identifying essential genes that can be applied to other bacteria that are not naturally transformable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang, Y., Durfee, T., Glasner, J. D., Qiu, Y., Frisch, D., Winterberg, K. M., et al. (2004) Systematic mutagenesis of the Escherichia coli genome. J. Bacteriol. 186, 4921–4930.

    Article  CAS  PubMed  Google Scholar 

  2. Glass, J. I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M. R., Maruf, M., et al. (2006) Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U.S.A. 103, 425–430.

    Article  CAS  PubMed  Google Scholar 

  3. Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103, 2833–2838.

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki, N., Okai, N., Nonaka, H., Tsuge, Y., Inui, M., and Yukawa, H. (2006) Highthroughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl. Environ. Microbiol. 72, 3750–3755.

    Article  CAS  PubMed  Google Scholar 

  5. Holtman, C. K., Chen, Y., Sandoval, P., Gonzales, A., Nalty, M. S., Thomas, T. L., et al. (2005) High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res. 12, 103–115.

    Article  CAS  PubMed  Google Scholar 

  6. Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 98, 12712–12717.

    Article  CAS  PubMed  Google Scholar 

  7. Tong, X., Campbell, J. W., Balazsi, G., Kay, K. A., Wanner, B. L., Gerdes, S. Y., et al. (2004) Genome-scale identification of conditionally essential genes in E. coli by DNA microarrays. Biochem. Biophys. Res. Commun. 322, 347–354.

    Article  CAS  PubMed  Google Scholar 

  8. Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E., Daugherty, M. D., et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684.

    Article  CAS  PubMed  Google Scholar 

  9. Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., et al. (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 100, 14339–14344.

    Article  CAS  PubMed  Google Scholar 

  10. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, E1–E11.

    Article  Google Scholar 

  11. Ji, Y., Woodnutt, G., Rosenberg, M., and Burnham, M. K. (2002) Identification of essential genes in Staphylococcus aureus using inducible antisense RNA. Methods Enzymol. 358, 123–128.

    Article  CAS  PubMed  Google Scholar 

  12. Forsyth, R. A., Haselbeck, R. J., Ohlsen, K. L., Yamamoto, R. T., Xu, H., Trawick, J. D., et al. (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400.

    Article  CAS  PubMed  Google Scholar 

  13. Lehoux, D. E., Sanschagrin, F., and Levesque, R. C. (2002) Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol. Lett. 210, 73–80.

    Article  CAS  PubMed  Google Scholar 

  14. Chalker, A. F., Minehart, H. W., Hughes, N. J., Koretke, K. K., Lonetto, M. A., Brinkman, K. K., et al. (2001) Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J. Bacteriol. 183, 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  15. Song, J. H., Ko, K. S., Lee, J. Y., Baek, J. Y., Oh, W. S., Yoon, H. S., et al. (2005) Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells 19, 365–374.

    CAS  PubMed  Google Scholar 

  16. Judson, N., and Mekalanos, J. J. (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat. Biotechnol. 18, 740–745.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., Arnaud, M., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. U.S.A. 100, 4678–4683.

    Article  CAS  PubMed  Google Scholar 

  18. Salama, N. R., Shepherd, B., and Falkow, S. (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J. Bacteriol. 186, 7926–7935.

    Article  CAS  PubMed  Google Scholar 

  19. Smith, V., Botstein, D., and Brown, P. O. (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc. Natl. Acad. Sci. U.S.A. 92, 6479–6483.

    Article  CAS  PubMed  Google Scholar 

  20. Akerley, B. J., Rubin, E. J., Camilli, A., Lampe, D. J., Robertson, H. M., and Mekalanos, J. J. (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 95, 8927–8932.

    Article  CAS  PubMed  Google Scholar 

  21. Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N., and Mekalanos, J. J. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99, 966–971.

    Article  CAS  PubMed  Google Scholar 

  22. Akerley, B. J., and Lampe, D. J. (2002) Analysis of gene function in bacterial pathogens by GAMBIT. Methods Enzymol. 358, 100–108.

    Article  CAS  PubMed  Google Scholar 

  23. Smith, H. O., Tomb, J. F., Dougherty, B. A., Fleischmann, R. D., and Venter, J. C. (1995) Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269, 538–540.

    Article  CAS  PubMed  Google Scholar 

  24. Hosking, S. L., Deadman, M. E., Moxon, E. R., Peden, J. F., Saunders, N. J., and High, N. J. (1998) An in silico evaluation of Tn916 as a tool for generalized mutagenesis in Haemophilus influenzae Rd. Microbiology 144 (Pt 9), 2525–2530.

    Article  CAS  PubMed  Google Scholar 

  25. Barcak, G. J., Chandler, M. S., Redfield, R. J., and Tomb, J. F. (1991) Genetic systems in Haemophilus influenzae. Methods Enzymol. 204, 321–342.

    Article  CAS  PubMed  Google Scholar 

  26. Smith, V., Chou, K. N., Lashkari, D., Botstein, D., and Brown, P. O. (1996) Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069–2074.

    Article  CAS  PubMed  Google Scholar 

  27. Hendrixson, D., Akerley, B., and DiRita, V. (2001) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 40, 214–224.

    Article  CAS  PubMed  Google Scholar 

  28. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.

    Article  CAS  PubMed  Google Scholar 

  29. Wong, S. M., and Mekalanos, J. J. (2000) Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97, 10191–10196.

    Article  CAS  PubMed  Google Scholar 

  30. Wong, S. M. (2004) SCE jumping: genetic tool for allelic exchange in bacteria. Crit. Rev. Eukaryot. Gene Expr. 14, 53–64.

    Article  CAS  PubMed  Google Scholar 

  31. Strych, U., Wohlfarth, S., and Winkler, U. K. (1994) Orotidine-5′-monophosphate decarboxylase from Pseudomonas aeruginosa PAO1: cloning, overexpression, and enzyme characterization. Curr. Microbiol. 29, 353–359.

    Article  CAS  PubMed  Google Scholar 

  32. Pósfai, G., Kolisnychenko, V., Bereczki, Z., and Blattner, F. R. (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res. 27, 4409–4415.

    Article  PubMed  Google Scholar 

  33. Bazaral, M., and Helinski, D. R. (1968) Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. J. Mol. Biol. 36, 185–194.

    Article  CAS  PubMed  Google Scholar 

  34. Konisky, J. (1982) Colicins and other bacteriocins with established modes of action. Annu. Rev. Microbiol. 36, 125–144.

    Article  CAS  PubMed  Google Scholar 

  35. Wong, S. M., and Akerley, B. J. (2003) Inducible expression system and marker-linked mutagenesis approach for functional genomics of Haemophilus influenzae. Gene 316, 177–186.

    Article  CAS  PubMed  Google Scholar 

  36. Rubin, E. J., Akerley, B. J., Novik, V. N., Lampe, D. J., Husson, R. N., and Mekalanos, J. J. (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 96, 1645–1650.

    Article  CAS  PubMed  Google Scholar 

  37. Simon, R., Priefer, U., and Puhler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784–791.

    Article  CAS  Google Scholar 

  38. Lampe, D. J., Churchill, M. E., and Robertson, H. M. (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15, 5470–5479.

    CAS  PubMed  Google Scholar 

  39. Lipkow, K., Buisine, N., Lampe, D. J., and Chalmers, R. (2004) Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex. Mol. Cell Biol. 24, 8301–8311.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wong, S.M., Akerley, B.J. (2008). Identification and Analysis of Essential Genes in Haemophilus influenzae . In: Osterman, A.L., Gerdes, S.Y. (eds) Microbial Gene Essentiality: Protocols and Bioinformatics. Methods in Molecular Biology™, vol 416. Humana Press. https://doi.org/10.1007/978-1-59745-321-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-321-9_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-378-7

  • Online ISBN: 978-1-59745-321-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics