Skip to main content

Gene Essentiality Analysis Based on DEG, a Database of Essential Genes

  • Protocol
Microbial Gene Essentiality: Protocols and Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 416))

Abstract

Essential genes are the genes that are indispensable for the survival of an organism. The genome-scale identification of essential genes has been performed in various organisms, and we consequently constructed DEG, a Database that contains currently available essential genes. Here we analyzed functional distributions of essential genes in DEG, and found that some essential-gene functions are even conserved between the prokaryote (bacteria) and the eukaryote (yeast), e.g., genes involved in information storage and processing are overrepresented, whereas those involved in metabolism are underrepresented in essential genes compared with non-essential ones. In bacteria, species specificity in functional distribution of essential genes is mainly due to those involved in cellular processes. Furthermore, within the category of information storage and processing, function of translation, ribosomal structure, and biogenesis are predominant in essential genes. Finally, some potential pitfalls for analyzing gene essentiality based on DEG are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.

    Article  CAS  PubMed  Google Scholar 

  2. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  3. Cho, M. K., Magnus, D., Caplan, A. L., and McGee, D. (1999) Policy forum: genetics. Ethical considerations in synthesizing a minimal genome. Science 286, 2087, 2089–2090.

    Article  CAS  PubMed  Google Scholar 

  4. Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., et al. (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169.

    Article  CAS  PubMed  Google Scholar 

  5. Mushegian, A. (1999) The minimal genome concept. Curr. Opin. Genet. Dev. 9, 709–714.

    Article  CAS  PubMed  Google Scholar 

  6. Koonin, E. V. (2000) How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet. 1, 99–116.

    Article  CAS  PubMed  Google Scholar 

  7. Fisher, L. M., Lawrence, J. M., Josty, I. C., Hopewell, R., Margerrison, E. E., and Cullen, M. E. (1989) Ciprofloxacin and the fluoroquinolones. New concepts on the mechanism of action and resistance. Am. J. Med. 87, 2S–8S.

    Article  CAS  PubMed  Google Scholar 

  8. Mushegian, A. R., and Koonin, E. V. (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. U.S.A. 93, 10268–10273.

    Article  CAS  PubMed  Google Scholar 

  9. Bruccoleri, R. E., Dougherty, T. J., and Davison, D. B. (1998) Concordance analysis of microbial genomes. Nucleic Acids Res. 26, 4482–4486.

    Article  CAS  PubMed  Google Scholar 

  10. Thanassi, J. A., Hartman-Neumann, S. L., Dougherty, T. J., Dougherty, B. A., and Pucci, M. J. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30, 3152–3162.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., Arnaud, M., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. U.S.A. 100, 4678–4683.

    Article  CAS  PubMed  Google Scholar 

  12. Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E., Daugherty, M. D., et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684.

    Article  CAS  PubMed  Google Scholar 

  13. Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N., and Mekalanos, J. J. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99, 966–971.

    Article  CAS  PubMed  Google Scholar 

  14. Ji, Y., Zhang, B., Van, S. F., Horn, W. P., Woodnutt, G., Burnham, M. K., and Rosenberg, M. (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293, 2266–2269.

    Article  CAS  PubMed  Google Scholar 

  15. Forsyth, R. A., Haselbeck, R. J., Ohlsen, K. L., Yamamoto, R. T., Xu, H., Trawick, J. D., et al. (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400.

    Article  CAS  PubMed  Google Scholar 

  16. Judson, N., and Mekalanos, J. J. (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat. Biotechnol. 18, 740–745.

    Article  CAS  PubMed  Google Scholar 

  17. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, R., Ou, H. Y., and Zhang, C. T. (2004) DEG: a database of essential genes. Nucleic Acids Res. 32 (Database issue), D271–D272.

    Article  CAS  PubMed  Google Scholar 

  19. Mewes, H. W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., et al. (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34.

    Article  CAS  PubMed  Google Scholar 

  20. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., et al. (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28.

    Article  CAS  PubMed  Google Scholar 

  21. Doolittle, R. F., Feng, D. F., Tsang, S., Cho, G., and Little, E. (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271, 470–477.

    Article  CAS  PubMed  Google Scholar 

  22. Peterson, S. N., and Fraser, C. M. (2001) The complexity of simplicity. Genome Biol. 2, comment 2002.1–2002.8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, CT., Zhang, R. (2008). Gene Essentiality Analysis Based on DEG, a Database of Essential Genes. In: Osterman, A.L., Gerdes, S.Y. (eds) Microbial Gene Essentiality: Protocols and Bioinformatics. Methods in Molecular Biology™, vol 416. Humana Press. https://doi.org/10.1007/978-1-59745-321-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-321-9_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-378-7

  • Online ISBN: 978-1-59745-321-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics