Skip to main content

Abstract

TGF-β has been implicated as an important factor in the growth, progression, and metastatic potential of advanced cancers. Increased expression and production of TGF-β has been found in many neoplasms, including prostate, breast, pancreatic, kidney, liver, colorectal, gastric, esophageal, ovarian, cervical, bladder, myeloma, head and neck, thyroid, Kaposi’s, melanoma, and non-small cell and small cell lung cancers and has been associated with significantly shorter patient survival. Elevated TGF-β may augment tumor growth by suppressing the immune system, stimulating neovascularization, mediating tumor/stromal interactions that stimulate tumor cell proliferation, and initiating epithelial-mesenchymal transition which may contribute to tumor metastasis. Antibodies neutralizing or blocking TGF-β may disrupt a key pathway that promotes tumor growth and provide an important therapeutic opportunity. Anti-TGF-β antibodies may become key components of therapeutic regimens when combined with standard radiation, hormonal, and/or chemotherapies. The ultimate safety and efficacy of TGF-β antagonists in the treatment of cancer will be established by clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350–1358.

    Article  CAS  PubMed  Google Scholar 

  2. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.

    Article  CAS  PubMed  Google Scholar 

  3. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 2003;3:531–536.

    Article  CAS  PubMed  Google Scholar 

  4. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. Invest New Drugs 2003;21:21–32.

    Article  CAS  PubMed  Google Scholar 

  5. Shirai Y, Kawata S, Tamura S, et al. Plasma transforming growth factor-beta 1 in patients with hepato-cellular carcinoma. Comparison with chronic liver diseases. Cancer 1994;73:2275–2279.

    Article  CAS  PubMed  Google Scholar 

  6. Ito N, Kawata S, Tamura S, et al. Positive correlation of plasma transforming growth factor-beta 1 levels with tumor vascularity in hepatocellular carcinoma. Cancer Lett 1995;89:45–48.

    CAS  PubMed  Google Scholar 

  7. Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Geliebter J. Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer. Nat Med 1995;1:282–284.

    Article  CAS  PubMed  Google Scholar 

  8. Junker U, Knoefel B, Nuske K, et al. Transforming growth factor beta 1 is significantly elevated in plasma of patients suffering from renal cell carcinoma. Cytokine 1996;8:794–798.

    Article  CAS  PubMed  Google Scholar 

  9. Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 1996;110:375–382.

    Article  CAS  PubMed  Google Scholar 

  10. Wikstrom P, Stattin P, Franck-Lissbrant I, Damber JE, Bergh A. Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 1998;37:19–29.

    Article  CAS  PubMed  Google Scholar 

  11. Wunderlich H, Steiner T, Kosmehl H, et al. Increased transforming growth factor beta1 plasma level in patients with renal cell carcinoma: a tumor-specific marker? Urol Int 1998;60:205–207.

    Article  CAS  PubMed  Google Scholar 

  12. Caulin C, Scholl FG, Frontelo P, Gamallo C, Quintanilla M. Chronic exposure of cultured transformed mouse epidermal cells to transforming growth factor-beta 1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype. Cell Growth Differ 1995;6:1027–1035.

    CAS  PubMed  Google Scholar 

  13. Ellenrieder V, Buck A, Gress TM. TGFbeta-regulated transcriptional mechanisms in cancer. Int J Gastrointest Cancer 2002;31:61–69.

    Article  CAS  PubMed  Google Scholar 

  14. Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 2002;62:497–505.

    CAS  PubMed  Google Scholar 

  15. Subramanian G, Schwarz RE, Higgins L, et al. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res 2004;64:5200–5211.

    Article  CAS  PubMed  Google Scholar 

  16. Ellenrieder V, Hendler SF, Boeck W, et al. Transforming growth factor beta 1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 2001;61:4222–4228.

    CAS  PubMed  Google Scholar 

  17. Filvaroff E, Erlebacher A, Ye J, et al. Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 1999; 126:4267–4279.

    CAS  PubMed  Google Scholar 

  18. Lindemann RK, Ballschmieter P, Nordheim A, Dittmer J. Transforming growth factor beta regulates parathyroid hormone-related protein expression in MDA-MB-231 breast cancer cells through a novel Smad/Ets synergism. J Biol Chem 2001;276:46,661–46,670

    Article  CAS  PubMed  Google Scholar 

  19. Kakonen SM, Selander KS, Chirgwin JM, et al. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 2002;277:24,571–24,578.

    Article  CAS  PubMed  Google Scholar 

  20. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 1993;92:2569–2576.

    Article  CAS  PubMed  Google Scholar 

  21. Ludviksson BR, Seegers D, Resnick AS, Strober W. The effect of TGF-beta1 on immune responses of naive versus memory CD4+ Th1/Th2 T cells. Eur J Immunol 2000;30:2101–2111.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001;194:629–644.

    Article  CAS  PubMed  Google Scholar 

  23. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61: 4766–4772.

    CAS  PubMed  Google Scholar 

  24. Kao JY, Gong Y, Chen CM, Zheng QD, Chen JJ. Tumor-derived TGF-Beta reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 2003;170:3806–3811.

    CAS  PubMed  Google Scholar 

  25. Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ. Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 2003;63:1860–1864.

    CAS  PubMed  Google Scholar 

  26. Terabe M, Matsui S, Park J-M, et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003;198: 1741–1752.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004;172:7335–7340.

    CAS  PubMed  Google Scholar 

  28. Terabe M, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 2004; 16:157–162.

    Article  CAS  PubMed  Google Scholar 

  29. Chen ML, Pittet MJ, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc Natl Acad Sci USA 2005;102:419–424.

    Article  CAS  PubMed  Google Scholar 

  30. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Ann Rev Immunol. 2006;24:99–146.

    Article  CAS  Google Scholar 

  31. Ueki N, Nakazato M, Ohkawa T, et al. Excessive production of transforming growth-factor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim Biophys Acta. 1992;1137:189–196.

    Article  CAS  PubMed  Google Scholar 

  32. Hoefer M, Anderer FA. Anti-(transforming growth factor beta) antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice. Cancer Immunol Immunother 1995;41:302–308.

    Article  CAS  PubMed  Google Scholar 

  33. Urashima M, Ogata A, Chauhan D, et al. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood. 1996;87:1928–1938.

    CAS  PubMed  Google Scholar 

  34. Teicher BA, Holden SA, Ara G, Chen G. Transforming growth factor-beta in in vivo resistance. Cancer Chemother Pharmacol 1996;37:601–609.

    Article  CAS  PubMed  Google Scholar 

  35. Wojtowicz-Praga S, Verma UN, Wakefield L. et al. Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 1996;19:169–175.

    CAS  PubMed  Google Scholar 

  36. Arteaga CL, Koli KM, Dugger TC, Clarke R. Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-beta. J Natl Cancer Inst 1999;91:46–53.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuzaki K, Date M, Furukawa F, et al. Autocrine stimulatory mechanism by transforming growth factor beta in human hepatocellular carcinoma. Cancer Res 2000;60:1394–1402.

    CAS  PubMed  Google Scholar 

  38. Rowland-Goldsmith MA, Maruyama H, Matsuda K, et al. Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 2002;1:161–167.

    CAS  PubMed  Google Scholar 

  39. Muraoka RS, Dumont N, Ritter CA, et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002;109:1551–1559.

    CAS  PubMed  Google Scholar 

  40. Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 2002;62:6021–6025.

    CAS  PubMed  Google Scholar 

  41. Yang YA, Dukhanina O, Tang B, et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002;109:1607–1615.

    CAS  PubMed  Google Scholar 

  42. Tada T, Ohzeki S, Utsumi K, et al. Transforming growth factor-beta-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 1991;146:1077–1082.

    CAS  PubMed  Google Scholar 

  43. Ohmori T, Yang JL, Price JO, Arteaga CL. Blockade of tumor cell transforming growth factor-betas enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res 1998;245:350–359.

    Article  CAS  PubMed  Google Scholar 

  44. Kim AH, Lebman DA, Dietz CM, Snyder SR, Eley KW, Chung TD. Transforming growth factor-beta is an endogenous radioresistance factor in the esophageal adenocarcinoma cell line OE-33. Int J Oncol 2003;23:1593–1599.

    CAS  PubMed  Google Scholar 

  45. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996;2:52–58.

    Article  CAS  PubMed  Google Scholar 

  46. Hsu FJ, Caspar CB, Czerwinski D, et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma—long-term results of a clinical trial. Blood 1997;89:3129–3135.

    CAS  PubMed  Google Scholar 

  47. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells [see comments]. Nat Med 1998;4:328–332.

    Article  CAS  PubMed  Google Scholar 

  48. Tzai TS, Shiau AL, Lin CS, Wu CL, Lin JS. Modulation of the immunostimulating effect of autologous tumor vaccine by anti-TGF-beta antibody and interferon-alpha on murine MBT-2 bladder cancer. Anticancer Res 1997;17:1073–1078.

    CAS  PubMed  Google Scholar 

  49. Zhang Q, Yang X, Pins M, et al. Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res 2005;65:1761–1769.

    Article  CAS  PubMed  Google Scholar 

  50. Ahmadzadeh M, Rosenberg SA. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 2005;174:5215–5223.

    CAS  PubMed  Google Scholar 

  51. Escudier B, Szczylik C, Eisen T, et al. Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). JCO 2005; 23(16S):4501.

    Google Scholar 

  52. De Vita V, Hellman S, Rosenberg S. Cancer Principles and Practice of Oncology, 6th ed, Philadephia: Lippincott Williams and Wilkins; 2001.

    Google Scholar 

  53. Hainsworth J, Sosman J, Spigel D, et al. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 2005;23:7889–7896.

    Article  CAS  PubMed  Google Scholar 

  54. Wunderlich H, Steiner T, Kosmehl H, et al. Increased transforming growth factor beta1 plasma level in patients with renal cell carcinoma: a tumor-specific marker? Urol Int 1998;60:205–207.

    Article  CAS  PubMed  Google Scholar 

  55. Yagasaki H, Kawata N, Takimoto Y, Nemoto N. Histopathological analysis of angiogenic factors in renal cell carcinoma. Int J Urol 2003;10:220–227.

    Article  PubMed  Google Scholar 

  56. Ananth S, Knebelmann B, Gruning W, et al. Transforming growth factor beta1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res 1999;59:2210–2216.

    CAS  PubMed  Google Scholar 

  57. Avigan D. Dendritic cell-tumor fusion vaccines for renal cell carcinoma. Clin Cancer Res 2004; 10:6347S–6352S.

    Article  CAS  PubMed  Google Scholar 

  58. Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 2004;10:4699–4708.

    Article  CAS  PubMed  Google Scholar 

  59. Massfelder T, Lang H, Schordan E, et al. Parathyroid hormone-related protein is an essential growth factor for human clear cell renal carcinoma and a target for the von Hippel-Lindau tumor suppressor gene. Cancer Res 2004;64:180–188.

    Article  CAS  PubMed  Google Scholar 

  60. American Cancer Society. Cancer Facts and Figures; 2006.

    Google Scholar 

  61. Abeloff M, Armitage JO, Niederhuber J, Kastan M, McKenna W. Clinical Oncology. Philadelphia, PA: Elsevier; 2004.

    Google Scholar 

  62. Reed JA, McNutt NS, Prieto VG, Albino AP. Expression of transforming growth factor-beta 2 in malignant melanoma correlates with the depth of tumor invasion. Implications for tumor progression. Am J Pathol 1994;145:97–104.

    CAS  Google Scholar 

  63. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118–1122.

    Article  CAS  PubMed  Google Scholar 

  64. Shah AH, Tabayoyong WB, Kundu SD, et al. Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res 2002;62:7135–7138.

    CAS  PubMed  Google Scholar 

  65. Maeda H, Shiraishi A. TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 1996;156:73–78.

    CAS  PubMed  Google Scholar 

  66. Sullivan TJ, Letterio JJ, van Elsas A, et al. Lack of a role for transforming growth factor-beta in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc Natl Acad Sci USA 2001;98:2587–2592.

    Article  CAS  PubMed  Google Scholar 

  67. Reiss M, Barcellos-Hoff MH. Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res Treat 1997;45:81–95.

    Article  CAS  PubMed  Google Scholar 

  68. Baillie R, Coombes RC, Smith J. Multiple forms of TGF-beta 1 in breast tissues: a biologically active form of the small latent complex of TGF-beta 1. Eur J Cancer 1996;32A:1566–1573.

    Article  CAS  PubMed  Google Scholar 

  69. Ivanovic V, Todorovic-Rakovic N, Demajo M, et al. Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur J Cancer 2003;39:454–461.

    Article  CAS  PubMed  Google Scholar 

  70. Nikolic-Vukosavljevic D, Todorovic-Rakovic N, Demajo M, et al. Plasma TGF-beta 1-related survival of postmenopausal metastatic breast cancer patients. Clin Exp Metastasis 2004;21: 581–585.

    Article  CAS  PubMed  Google Scholar 

  71. Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C. Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 2004;10: 491–498.

    Article  CAS  PubMed  Google Scholar 

  72. Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2000;2:125–132.

    Article  CAS  PubMed  Google Scholar 

  73. Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L. A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 Cells. Cancer Res 1999;59:5041–5046.

    CAS  PubMed  Google Scholar 

  74. Guise TA, Chirgwin JM. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin Orthop 2003:S32–S38.

    Google Scholar 

  75. Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta 1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27–36.

    CAS  PubMed  Google Scholar 

  76. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005;6:600–607.

    Article  CAS  PubMed  Google Scholar 

  77. Seo N, Tokura Y, Takigawa M, Egawa K. Depletion of IL-10-and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol 1999;163:242–249.

    CAS  PubMed  Google Scholar 

  78. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351:1502–1512.

    Article  CAS  PubMed  Google Scholar 

  79. Sinnreich O, Kratzsch J, Reichenbach A, Glaser C, Huse K, Birkenmeier G. Plasma levels of transforming growth factor-beta1 and alpha2-macroglobulin before and after radical prostatectomy: association to clinicopathological parameters. Prostate 2004;61:201–208.

    Article  CAS  PubMed  Google Scholar 

  80. Shariat SF, Lamb DJ, Kattan MW, et al. Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and-3 with prostate cancer invasion, progression, and metastasis. J Clin Oncol 2002;20:833–841.

    Article  CAS  PubMed  Google Scholar 

  81. Eastham JA, Truong LD, Rogers E, et al. Transforming growth factor-beta 1: comparative immunohistochemical localization in human primary and metastatic prostate cancer. Lab Invest 1995;73: 628–635.

    CAS  PubMed  Google Scholar 

  82. Gerdes MJ, Larsen M, McBride L, Dang TD, Lu B, Rowley DR. Localization of transforming growth factor-beta1 and type II receptor in developing normal human prostate and carcinoma tissues. J Histochem Cytochem 1998;46:379–388.

    CAS  PubMed  Google Scholar 

  83. Steiner MS, Zhou ZZ, Tonb DC, Barrack ER. Expression of transforming growth factor-beta 1 in prostate cancer. Endocrinology 1994;135:2240–2247.

    Article  CAS  PubMed  Google Scholar 

  84. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002;8:2912–2923.

    CAS  PubMed  Google Scholar 

  85. Roberts AB, Sporn MB, Assoian RK, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986;83:4167–4171.

    Article  CAS  PubMed  Google Scholar 

  86. Stearns ME, Garcia FU, Fudge K, Rhim J, Wang M. Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin Cancer Res 1999;5:711–720.

    CAS  PubMed  Google Scholar 

  87. Steiner MS, Barrack ER. Transforming growth factor-beta 1 overproduction in prostate cancer: effects on growth in vivo and in vitro. Mol Endocrinol 1992;6:15–25.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang F, Juwon L, Shan L, Pettaway C, Dong Z. Blockade of transforming growth factor-b signaling suppresses progression of androgen-independent human cancer in nude mice. Clin Cancer Res 2005; 11:4512–4520.

    Article  CAS  PubMed  Google Scholar 

  89. Granchi S, Brocchi S, Bonaccorsi L, et al. Endothelin-1 production by prostate cancer cell lines is up-regulated by factors involved in cancer progression and down-regulated by androgens. Prostate 2001;49:267–277.

    Article  CAS  PubMed  Google Scholar 

  90. Dallas SL, Zhao S, Cramer SD, Chen Z, Peehl DM, Bonewald LF. Preferential production of latent transforming growth factor beta-2 by primary prostatic epithelial cells and its activation by prostatespecific antigen. J Cell Physiol 2004;5:5.

    Google Scholar 

  91. Friess H, Yamanaka Y, Buchler M, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993;105: 1846–1856.

    CAS  PubMed  Google Scholar 

  92. Lohr M, Schmidt C, Ringel J, et al. Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 2001;61:550–555.

    CAS  PubMed  Google Scholar 

  93. Wagner M, Kleeff J, Friess H, Buchler MW, Korc M. Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased survival in human Pancreatic Cancer. Pancreas 1999;19:370–376.

    Article  CAS  PubMed  Google Scholar 

  94. Rowland-Goldsmith MA, Maruyama H, Kusama T, Ralli S, Korc M. Soluble Type II transforming growth factor-beta (TGF-beta) receptor inhibits TGF-beta signaling in Colo-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clin Cancer Res 2001;7:2931–2940.

    CAS  PubMed  Google Scholar 

  95. Urba Ska-Rys H, Wierzbowska A, Robak T. Circulating angiogenic cytokines in multiple myeloma and related disorders. Eur Cytokine Netw 2003;14:40–51.

    PubMed  Google Scholar 

  96. Hayashi T, Hideshima T, Nguyen AN, et al. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 2004;10:7540–7546.

    Article  CAS  PubMed  Google Scholar 

  97. Otsuki T, Yamada O, Kurebayashi J, et al. Expression and in vitro modification of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP-receptor in human myeloma cells. Leuk Lymphoma 2001;41:397–409.

    Article  CAS  PubMed  Google Scholar 

  98. Raje N, Hideshima T, Davies FE, et al. Tumour cell/dendritic cell fusions as a vaccination strategy for multiple myeloma. Br J Haematol 2004;125:343–352.

    Article  PubMed  Google Scholar 

  99. Reichardt VL Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P. Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 2003;88:1139–1149.

    PubMed  Google Scholar 

  100. Davis TA, Maloney DG, Czerwinski DK, Liles TM, Levy R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 1998;92:1184–1190.

    CAS  PubMed  Google Scholar 

  101. Timmerman JM, Czerwinski DK, Davis TA, et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002;99:1517–1526.

    Article  CAS  PubMed  Google Scholar 

  102. Woszczyk D, Gola J, Jurzak M, Mazurek U, Mykala-Ciesla J, Wilczok T. Expression of TGF beta1 genes and their receptor types I, II, and III in low-and high-grade malignancy non-Hodgkin’s lymphomas. Med Sci Monit 2004;10:CR33–CR37.

    CAS  PubMed  Google Scholar 

  103. Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005;105:1640–1647.

    Article  CAS  PubMed  Google Scholar 

  104. Matsunaga T, Takemoto N, Miyajima N, et al. Splenic marginal zone lymphoma presenting as myelofibrosis associated with bone marrow involvement of lymphoma cells which secrete a large amount of TGF-beta. Ann Hematol 2004;83:322–325.

    Article  CAS  PubMed  Google Scholar 

  105. Moriuchi M, Moriuchi H. Transforming growth factor-beta enhances human T-cell leukemia virus type I infection. J Med Virol 2002;67:427–430.

    Article  CAS  PubMed  Google Scholar 

  106. Jung YJ, Kim JY, Park JH. TGF-beta1 inhibits Fas-mediated apoptosis by regulating surface Fas and cFLIPL expression in human leukaemia/lymphoma cells. Int J Mol Med 2004;13:99–104.

    CAS  PubMed  Google Scholar 

  107. Maloney DG, Brown S, Czerwinski DK, et al. Monoclonal anti-idiotype antibody therapy of B-cell lymphoma: the addition of a short course of chemotherapy does not interfere with the antitumor effect nor prevent the emergence of idiotype-negative variant cells. Blood 1992;80:1502–1510.

    CAS  PubMed  Google Scholar 

  108. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med 1982;306:517–522.

    Article  CAS  PubMed  Google Scholar 

  109. Serrano-Olvera A, Duenas-Gonzalez A, Gallardo-Rincon D, Candelaria M, De la Garza-Salazar J. Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer. Cancer Treat Rev 2006;32:180–190.

    Article  CAS  PubMed  Google Scholar 

  110. Calvo E, Baselga J. Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol 2006;24:2158–2163.

    Article  CAS  PubMed  Google Scholar 

  111. Yeon CH, Pegram MD. Anti-erbB-2 antibody trastuzumab in the treatment of HER2-amplified breast cancer. Invest New Drugs 2005;23:391–409.

    Article  CAS  PubMed  Google Scholar 

  112. Kong F-M, Anscher MS, Jirtle RL. Transforming growth factor beta. In: Methods in Molecular Medicine Vol 14; Tumor Marker Protocols (Hanausek M, Walaszek Z, eds.), Totowa, NJ: Humana Press Inc, 1998.

    Google Scholar 

  113. Shu XO, Gao YT, Cai Q, et al. Genetics polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res 2004;64:836–839.

    Article  CAS  PubMed  Google Scholar 

  114. Kattan MW, Shariat SF, Andrews B, et al. The addition of interleukin-6 soluble receptor and transforming growth factor beta 1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol 2003;21:3573–3579.

    Article  CAS  PubMed  Google Scholar 

  115. Shariat SF, Kattan MW, Traxel E, et al. Association of pre-and postoperative plasma levels of transforming growth factor β1 and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res 2004;10:1992–1999.

    Article  CAS  PubMed  Google Scholar 

  116. Shariat SF, Shalev M, Menesses-Diaz A, et al. Preoperative plasma levels of transforming growth factor beta1 (TGF-β1) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol 2005;19:2856–2864.

    Google Scholar 

  117. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003;9:606–612.

    PubMed  Google Scholar 

  118. Letterio JJ. Cancer models: manipulating the transforming growth factor-β pathway in mice. In: Tumor Models in Cancer Research (Teicher BA, ed.), Totowa, NJ: Humana Press, 2002.

    Google Scholar 

  119. Ruzek MC, Hawes M, Pratt B, et al. Minimal effects on immune parameters following chronic anti-TGF-β monoclonal antibody administration to normal mice. Immunopharm Immunotox 2003; 25:235–257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hsu, F.J., Teicher, B.A., McPherson, J.M. (2008). Rationale for Anti-TGF-β Antibody Therapy in Oncology. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_46

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics